Cargando…

Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation

Somatic activating mutations of PIK3CA are associated with development of vascular malformations (VMs). Here, we describe a microfluidic model of PIK3CA-driven VMs consisting of human umbilical vein endothelial cells expressing PIK3CA activating mutations embedded in three-dimensional hydrogels. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Aw, Wen Yih, Cho, Crescentia, Wang, Hao, Cooper, Anne Hope, Doherty, Elizabeth L., Rocco, David, Huang, Stephanie A., Kubik, Sarah, Whitworth, Chloe P., Armstrong, Ryan, Hickey, Anthony J., Griffith, Boyce, Kutys, Matthew L., Blatt, Julie, Polacheck, William J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931220/
https://www.ncbi.nlm.nih.gov/pubmed/36791204
http://dx.doi.org/10.1126/sciadv.ade8939
_version_ 1784889200199335936
author Aw, Wen Yih
Cho, Crescentia
Wang, Hao
Cooper, Anne Hope
Doherty, Elizabeth L.
Rocco, David
Huang, Stephanie A.
Kubik, Sarah
Whitworth, Chloe P.
Armstrong, Ryan
Hickey, Anthony J.
Griffith, Boyce
Kutys, Matthew L.
Blatt, Julie
Polacheck, William J.
author_facet Aw, Wen Yih
Cho, Crescentia
Wang, Hao
Cooper, Anne Hope
Doherty, Elizabeth L.
Rocco, David
Huang, Stephanie A.
Kubik, Sarah
Whitworth, Chloe P.
Armstrong, Ryan
Hickey, Anthony J.
Griffith, Boyce
Kutys, Matthew L.
Blatt, Julie
Polacheck, William J.
author_sort Aw, Wen Yih
collection PubMed
description Somatic activating mutations of PIK3CA are associated with development of vascular malformations (VMs). Here, we describe a microfluidic model of PIK3CA-driven VMs consisting of human umbilical vein endothelial cells expressing PIK3CA activating mutations embedded in three-dimensional hydrogels. We observed enlarged, irregular vessel phenotypes and the formation of cyst-like structures consistent with clinical signatures and not previously observed in cell culture models. Pathologic morphologies occurred concomitant with up-regulation of Rac1/p21-activated kinase (PAK), mitogen-activated protein kinase cascades (MEK/ERK), and mammalian target of rapamycin (mTORC1/2) signaling networks. We observed differential effects between alpelisib, a PIK3CA inhibitor, and rapamycin, an mTORC1 inhibitor, in mitigating matrix degradation and network topology. While both were effective in preventing vessel enlargement, rapamycin failed to reduce MEK/ERK and mTORC2 activity and resulted in hyperbranching, while inhibiting PAK, MEK1/2, and mTORC1/2 mitigates abnormal growth and vascular dilation. Collectively, these findings demonstrate an in vitro platform for VMs and establish a role of dysregulated Rac1/PAK and mTORC1/2 signaling in PIK3CA-driven VMs.
format Online
Article
Text
id pubmed-9931220
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-99312202023-02-16 Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation Aw, Wen Yih Cho, Crescentia Wang, Hao Cooper, Anne Hope Doherty, Elizabeth L. Rocco, David Huang, Stephanie A. Kubik, Sarah Whitworth, Chloe P. Armstrong, Ryan Hickey, Anthony J. Griffith, Boyce Kutys, Matthew L. Blatt, Julie Polacheck, William J. Sci Adv Biomedicine and Life Sciences Somatic activating mutations of PIK3CA are associated with development of vascular malformations (VMs). Here, we describe a microfluidic model of PIK3CA-driven VMs consisting of human umbilical vein endothelial cells expressing PIK3CA activating mutations embedded in three-dimensional hydrogels. We observed enlarged, irregular vessel phenotypes and the formation of cyst-like structures consistent with clinical signatures and not previously observed in cell culture models. Pathologic morphologies occurred concomitant with up-regulation of Rac1/p21-activated kinase (PAK), mitogen-activated protein kinase cascades (MEK/ERK), and mammalian target of rapamycin (mTORC1/2) signaling networks. We observed differential effects between alpelisib, a PIK3CA inhibitor, and rapamycin, an mTORC1 inhibitor, in mitigating matrix degradation and network topology. While both were effective in preventing vessel enlargement, rapamycin failed to reduce MEK/ERK and mTORC2 activity and resulted in hyperbranching, while inhibiting PAK, MEK1/2, and mTORC1/2 mitigates abnormal growth and vascular dilation. Collectively, these findings demonstrate an in vitro platform for VMs and establish a role of dysregulated Rac1/PAK and mTORC1/2 signaling in PIK3CA-driven VMs. American Association for the Advancement of Science 2023-02-15 /pmc/articles/PMC9931220/ /pubmed/36791204 http://dx.doi.org/10.1126/sciadv.ade8939 Text en Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Aw, Wen Yih
Cho, Crescentia
Wang, Hao
Cooper, Anne Hope
Doherty, Elizabeth L.
Rocco, David
Huang, Stephanie A.
Kubik, Sarah
Whitworth, Chloe P.
Armstrong, Ryan
Hickey, Anthony J.
Griffith, Boyce
Kutys, Matthew L.
Blatt, Julie
Polacheck, William J.
Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation
title Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation
title_full Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation
title_fullStr Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation
title_full_unstemmed Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation
title_short Microphysiological model of PIK3CA-driven vascular malformations reveals a role of dysregulated Rac1 and mTORC1/2 in lesion formation
title_sort microphysiological model of pik3ca-driven vascular malformations reveals a role of dysregulated rac1 and mtorc1/2 in lesion formation
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931220/
https://www.ncbi.nlm.nih.gov/pubmed/36791204
http://dx.doi.org/10.1126/sciadv.ade8939
work_keys_str_mv AT awwenyih microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT chocrescentia microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT wanghao microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT cooperannehope microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT dohertyelizabethl microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT roccodavid microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT huangstephaniea microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT kubiksarah microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT whitworthchloep microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT armstrongryan microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT hickeyanthonyj microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT griffithboyce microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT kutysmatthewl microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT blattjulie microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation
AT polacheckwilliamj microphysiologicalmodelofpik3cadrivenvascularmalformationsrevealsaroleofdysregulatedrac1andmtorc12inlesionformation