Cargando…
Combining non-negative matrix factorization with graph Laplacian regularization for predicting drug-miRNA associations based on multi-source information fusion
Increasing evidences suggest that miRNAs play a key role in the occurrence and progression of many complex human diseases. Therefore, targeting dysregulated miRNAs with small molecule drugs in the clinical has become a new treatment. Nevertheless, it is high cost and time-consuming for identifying m...
Autores principales: | Wang, Mei-Neng, Li, Yu, Lei, Li-Lan, Ding, De-Wu, Xie, Xue-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931722/ https://www.ncbi.nlm.nih.gov/pubmed/36817132 http://dx.doi.org/10.3389/fphar.2023.1132012 |
Ejemplares similares
-
Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Matrix Completion
por: Wang, Minhui, et al.
Publicado: (2018) -
LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction
por: Chen, Xing, et al.
Publicado: (2017) -
Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Logistic Matrix Factorization
por: Wang, Aizhen, et al.
Publicado: (2021) -
Applications of combinatorial matrix theory to Laplacian matrices of graphs
por: Molitierno, Jason J
Publicado: (2012) -
Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs
por: Shang, Yilun
Publicado: (2015)