Cargando…
STING controls T cell memory fitness during infection through T cell-intrinsic and IDO-dependent mechanisms
Stimulator of interferon genes (STING) signaling has been extensively studied in inflammatory diseases and cancer, while its role in T cell responses to infection is unclear. Using Listeria monocytogenes strains engineered to induce different levels of c-di-AMP, we found that high STING signals impa...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934307/ https://www.ncbi.nlm.nih.gov/pubmed/36634134 http://dx.doi.org/10.1073/pnas.2205049120 |
Sumario: | Stimulator of interferon genes (STING) signaling has been extensively studied in inflammatory diseases and cancer, while its role in T cell responses to infection is unclear. Using Listeria monocytogenes strains engineered to induce different levels of c-di-AMP, we found that high STING signals impaired T cell memory upon infection via increased Bim levels and apoptosis. Unexpectedly, reduction of TCR signal strength or T cell-STING expression decreased Bim expression, T cell apoptosis, and recovered T cell memory. We found that TCR signal intensity coupled STING signal strength to the unfolded protein response (UPR) and T cell survival. Under strong STING signaling, Indoleamine-pyrrole 2,3-dioxygenase (IDO) inhibition also reduced apoptosis and led to a recovery of T cell memory in STING sufficient CD8 T cells. Thus, STING signaling regulates CD8 T cell memory fitness through both cell-intrinsic and extrinsic mechanisms. These studies provide insight into how IDO and STING therapies could improve long-term T cell protective immunity. |
---|