Cargando…

RNA polymerase sliding on DNA can couple the transcription of nearby bacterial operons

DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases...

Descripción completa

Detalles Bibliográficos
Autores principales: Tenenbaum, Debora, Inlow, Koe, Friedman, Larry, Cai, Anthony, Gelles, Jeff, Kondev, Jane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9934669/
https://www.ncbi.nlm.nih.gov/pubmed/36798213
http://dx.doi.org/10.1101/2023.02.10.528045
Descripción
Sumario:DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of post-termination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance- and time-scales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant inter-operon coupling can occur and the time required. These quantities depend on previously uncharacterized molecular association and dissociation rate constants between DNA, RNAP and the transcription initiation factor σ(70); we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevant σ(70) concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼ 1, 000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in the E. coli genome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA.