Cargando…
Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology to determine the precise gene expression of individual cells and identify cell heterogeneity and subpopulations. However, technical limitations of scRNA-seq lead to heterogeneous and sparse data. Here, we present autoCell, a deep-l...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939381/ https://www.ncbi.nlm.nih.gov/pubmed/36814845 http://dx.doi.org/10.1016/j.crmeth.2022.100382 |
_version_ | 1784890838534324224 |
---|---|
author | Xu, Junlin Xu, Jielin Meng, Yajie Lu, Changcheng Cai, Lijun Zeng, Xiangxiang Nussinov, Ruth Cheng, Feixiong |
author_facet | Xu, Junlin Xu, Jielin Meng, Yajie Lu, Changcheng Cai, Lijun Zeng, Xiangxiang Nussinov, Ruth Cheng, Feixiong |
author_sort | Xu, Junlin |
collection | PubMed |
description | Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology to determine the precise gene expression of individual cells and identify cell heterogeneity and subpopulations. However, technical limitations of scRNA-seq lead to heterogeneous and sparse data. Here, we present autoCell, a deep-learning approach for scRNA-seq dropout imputation and feature extraction. autoCell is a variational autoencoding network that combines graph embedding and a probabilistic depth Gaussian mixture model to infer the distribution of high-dimensional, sparse scRNA-seq data. We validate autoCell on simulated datasets and biologically relevant scRNA-seq. We show that interpolation of autoCell improves the performance of existing tools in identifying cell developmental trajectories of human preimplantation embryos. We identify disease-associated astrocytes (DAAs) and reconstruct DAA-specific molecular networks and ligand-receptor interactions involved in cell-cell communications using Alzheimer’s disease as a prototypical example. autoCell provides a toolbox for end-to-end analysis of scRNA-seq data, including visualization, clustering, imputation, and disease-specific gene network identification. |
format | Online Article Text |
id | pubmed-9939381 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99393812023-02-21 Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data Xu, Junlin Xu, Jielin Meng, Yajie Lu, Changcheng Cai, Lijun Zeng, Xiangxiang Nussinov, Ruth Cheng, Feixiong Cell Rep Methods Article Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology to determine the precise gene expression of individual cells and identify cell heterogeneity and subpopulations. However, technical limitations of scRNA-seq lead to heterogeneous and sparse data. Here, we present autoCell, a deep-learning approach for scRNA-seq dropout imputation and feature extraction. autoCell is a variational autoencoding network that combines graph embedding and a probabilistic depth Gaussian mixture model to infer the distribution of high-dimensional, sparse scRNA-seq data. We validate autoCell on simulated datasets and biologically relevant scRNA-seq. We show that interpolation of autoCell improves the performance of existing tools in identifying cell developmental trajectories of human preimplantation embryos. We identify disease-associated astrocytes (DAAs) and reconstruct DAA-specific molecular networks and ligand-receptor interactions involved in cell-cell communications using Alzheimer’s disease as a prototypical example. autoCell provides a toolbox for end-to-end analysis of scRNA-seq data, including visualization, clustering, imputation, and disease-specific gene network identification. Elsevier 2023-01-05 /pmc/articles/PMC9939381/ /pubmed/36814845 http://dx.doi.org/10.1016/j.crmeth.2022.100382 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Xu, Junlin Xu, Jielin Meng, Yajie Lu, Changcheng Cai, Lijun Zeng, Xiangxiang Nussinov, Ruth Cheng, Feixiong Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data |
title | Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data |
title_full | Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data |
title_fullStr | Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data |
title_full_unstemmed | Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data |
title_short | Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data |
title_sort | graph embedding and gaussian mixture variational autoencoder network for end-to-end analysis of single-cell rna sequencing data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939381/ https://www.ncbi.nlm.nih.gov/pubmed/36814845 http://dx.doi.org/10.1016/j.crmeth.2022.100382 |
work_keys_str_mv | AT xujunlin graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata AT xujielin graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata AT mengyajie graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata AT luchangcheng graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata AT cailijun graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata AT zengxiangxiang graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata AT nussinovruth graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata AT chengfeixiong graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata |