Cargando…

Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data

Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology to determine the precise gene expression of individual cells and identify cell heterogeneity and subpopulations. However, technical limitations of scRNA-seq lead to heterogeneous and sparse data. Here, we present autoCell, a deep-l...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Junlin, Xu, Jielin, Meng, Yajie, Lu, Changcheng, Cai, Lijun, Zeng, Xiangxiang, Nussinov, Ruth, Cheng, Feixiong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939381/
https://www.ncbi.nlm.nih.gov/pubmed/36814845
http://dx.doi.org/10.1016/j.crmeth.2022.100382
_version_ 1784890838534324224
author Xu, Junlin
Xu, Jielin
Meng, Yajie
Lu, Changcheng
Cai, Lijun
Zeng, Xiangxiang
Nussinov, Ruth
Cheng, Feixiong
author_facet Xu, Junlin
Xu, Jielin
Meng, Yajie
Lu, Changcheng
Cai, Lijun
Zeng, Xiangxiang
Nussinov, Ruth
Cheng, Feixiong
author_sort Xu, Junlin
collection PubMed
description Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology to determine the precise gene expression of individual cells and identify cell heterogeneity and subpopulations. However, technical limitations of scRNA-seq lead to heterogeneous and sparse data. Here, we present autoCell, a deep-learning approach for scRNA-seq dropout imputation and feature extraction. autoCell is a variational autoencoding network that combines graph embedding and a probabilistic depth Gaussian mixture model to infer the distribution of high-dimensional, sparse scRNA-seq data. We validate autoCell on simulated datasets and biologically relevant scRNA-seq. We show that interpolation of autoCell improves the performance of existing tools in identifying cell developmental trajectories of human preimplantation embryos. We identify disease-associated astrocytes (DAAs) and reconstruct DAA-specific molecular networks and ligand-receptor interactions involved in cell-cell communications using Alzheimer’s disease as a prototypical example. autoCell provides a toolbox for end-to-end analysis of scRNA-seq data, including visualization, clustering, imputation, and disease-specific gene network identification.
format Online
Article
Text
id pubmed-9939381
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-99393812023-02-21 Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data Xu, Junlin Xu, Jielin Meng, Yajie Lu, Changcheng Cai, Lijun Zeng, Xiangxiang Nussinov, Ruth Cheng, Feixiong Cell Rep Methods Article Single-cell RNA sequencing (scRNA-seq) is a revolutionary technology to determine the precise gene expression of individual cells and identify cell heterogeneity and subpopulations. However, technical limitations of scRNA-seq lead to heterogeneous and sparse data. Here, we present autoCell, a deep-learning approach for scRNA-seq dropout imputation and feature extraction. autoCell is a variational autoencoding network that combines graph embedding and a probabilistic depth Gaussian mixture model to infer the distribution of high-dimensional, sparse scRNA-seq data. We validate autoCell on simulated datasets and biologically relevant scRNA-seq. We show that interpolation of autoCell improves the performance of existing tools in identifying cell developmental trajectories of human preimplantation embryos. We identify disease-associated astrocytes (DAAs) and reconstruct DAA-specific molecular networks and ligand-receptor interactions involved in cell-cell communications using Alzheimer’s disease as a prototypical example. autoCell provides a toolbox for end-to-end analysis of scRNA-seq data, including visualization, clustering, imputation, and disease-specific gene network identification. Elsevier 2023-01-05 /pmc/articles/PMC9939381/ /pubmed/36814845 http://dx.doi.org/10.1016/j.crmeth.2022.100382 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Xu, Junlin
Xu, Jielin
Meng, Yajie
Lu, Changcheng
Cai, Lijun
Zeng, Xiangxiang
Nussinov, Ruth
Cheng, Feixiong
Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
title Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
title_full Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
title_fullStr Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
title_full_unstemmed Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
title_short Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
title_sort graph embedding and gaussian mixture variational autoencoder network for end-to-end analysis of single-cell rna sequencing data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939381/
https://www.ncbi.nlm.nih.gov/pubmed/36814845
http://dx.doi.org/10.1016/j.crmeth.2022.100382
work_keys_str_mv AT xujunlin graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata
AT xujielin graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata
AT mengyajie graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata
AT luchangcheng graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata
AT cailijun graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata
AT zengxiangxiang graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata
AT nussinovruth graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata
AT chengfeixiong graphembeddingandgaussianmixturevariationalautoencodernetworkforendtoendanalysisofsinglecellrnasequencingdata