Cargando…
Identifying key multifunctional components shared by critical cancer and normal liver pathways via SparseGMM
Despite the abundance of multimodal data, suitable statistical models that can improve our understanding of diseases with genetic underpinnings are challenging to develop. Here, we present SparseGMM, a statistical approach for gene regulatory network discovery. SparseGMM uses latent variable modelin...
Autores principales: | Bakr, Shaimaa, Brennan, Kevin, Mukherjee, Pritam, Argemi, Josepmaria, Hernaez, Mikel, Gevaert, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939431/ https://www.ncbi.nlm.nih.gov/pubmed/36814838 http://dx.doi.org/10.1016/j.crmeth.2022.100392 |
Ejemplares similares
-
JIND: joint integration and discrimination for automated single-cell annotation
por: Goyal, Mohit, et al.
Publicado: (2022) -
Benchmark of long non-coding RNA quantification for RNA sequencing of cancer samples
por: Zheng, Hong, et al.
Publicado: (2019) -
Multiple Sclerosis Lesion Detection Using Constrained GMM and Curve Evolution
por: Freifeld, Oren, et al.
Publicado: (2009) -
Portfolio Efficiency Tests with Conditioning Information—Comparing GMM and GEL Estimators
por: Vigo-Pereira, Caio, et al.
Publicado: (2022) -
Identifying New Epigenetic Drivers of Liver Fibrosis
por: Argemi, Josepmaria, et al.
Publicado: (2018)