Cargando…
siVAE: interpretable deep generative models for single-cell transcriptomes
Neural networks such as variational autoencoders (VAE) perform dimensionality reduction for the visualization and analysis of genomic data, but are limited in their interpretability: it is unknown which data features are represented by each embedding dimension. We present siVAE, a VAE that is interp...
Autores principales: | Choi, Yongin, Li, Ruoxin, Quon, Gerald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940350/ https://www.ncbi.nlm.nih.gov/pubmed/36803416 http://dx.doi.org/10.1186/s13059-023-02850-y |
Ejemplares similares
-
scBFA: modeling detection patterns to mitigate technical noise in large-scale single-cell genomics data
por: Li, Ruoxin, et al.
Publicado: (2019) -
BindVAE: Dirichlet variational autoencoders for de novo motif discovery from accessible chromatin
por: Kshirsagar, Meghana, et al.
Publicado: (2022) -
XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data
por: Withnell, Eloise, et al.
Publicado: (2021) -
Correction to: scBFA: modeling detection patterns to mitigate technical noise in large-scale single-cell genomics data
por: Li, Ruoxin, et al.
Publicado: (2019) -
Unsupervised Outlier Detection in IOT Using Deep VAE
por: Gouda, Walaa, et al.
Publicado: (2022)