Cargando…
Machine-learning-assisted analysis of transition metal dichalcogenide thin-film growth
In situ reflective high-energy electron diffraction (RHEED) is widely used to monitor the surface crystalline state during thin-film growth by molecular beam epitaxy (MBE) and pulsed laser deposition. With the recent development of machine learning (ML), ML-assisted analysis of RHEED videos aids in...
Autores principales: | Kim, Hyuk Jin, Chong, Minsu, Rhee, Tae Gyu, Khim, Yeong Gwang, Jung, Min-Hyoung, Kim, Young-Min, Jeong, Hu Young, Choi, Byoung Ki, Chang, Young Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941396/ https://www.ncbi.nlm.nih.gov/pubmed/36806667 http://dx.doi.org/10.1186/s40580-023-00359-5 |
Ejemplares similares
-
Controllable Thin‐Film Approaches for Doping and Alloying Transition Metal Dichalcogenides Monolayers
por: Lin, Yu‐Chuan, et al.
Publicado: (2021) -
Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
por: Shevitski, Brian, et al.
Publicado: (2020) -
Manipulating the nonlinearity of transition-metal dichalcogenide polaritons
por: Hwang, Min-Soo, et al.
Publicado: (2023) -
Multicomponent Transition Metal Dichalcogenide Nanosheets for Imaging‐Guided Photothermal and Chemodynamic Therapy
por: Zhu, Yu, et al.
Publicado: (2020) -
Hyperfine interaction in atomically thin transition metal dichalcogenides
por: Avdeev, Ivan D., et al.
Publicado: (2019)