Cargando…
Extraction and characterization of pectin from watermelon rind using acetic acid
In this work, watermelon rind was used for extraction of pectin with acetic acid solution. The effects of pH, temperature and extraction time on the pectin yield were investigated. Response surface based on Box-Behnken model was employed to optimize the extraction parameters. The model shows an opti...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942000/ https://www.ncbi.nlm.nih.gov/pubmed/36825180 http://dx.doi.org/10.1016/j.heliyon.2023.e13525 |
Sumario: | In this work, watermelon rind was used for extraction of pectin with acetic acid solution. The effects of pH, temperature and extraction time on the pectin yield were investigated. Response surface based on Box-Behnken model was employed to optimize the extraction parameters. The model shows an optimum pectin yield of 18.21%, which is in agreement with the value confirmed through experiment (18.20%). The moisture content, ash content, degree of esterification, degree of methylation, equivalent weight, methoxy content, and anhydrouronic acid of the extracted pectin were determined. The values of the moisture content, ash content, degree of esterification, degree of methylation, equivalent weight, methoxy content, anhydrouronic acid are 8.42%, 5.1%, 57.30%, 23.5%, 983.9 mg/mol, 7.3% and 72.36%, respectively. The results show watermelon peel can be an alternative source for pectin production with reasonable pectin yield and pectin quality. |
---|