Cargando…
Photocatalysis and Kinetic Resolution by Lithiation to Give Enantioenriched 2-Arylpiperazines
[Image: see text] Piperazines are important heterocycles in drug compounds. We report the asymmetric synthesis of arylpiperazines by photocatalytic decarboxylative arylation (metallaphotoredox catalysis) then kinetic resolution using n-BuLi/(+)-sparteine. This gave a range of piperazines with very h...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942196/ https://www.ncbi.nlm.nih.gov/pubmed/36735675 http://dx.doi.org/10.1021/acs.orglett.3c00074 |
Sumario: | [Image: see text] Piperazines are important heterocycles in drug compounds. We report the asymmetric synthesis of arylpiperazines by photocatalytic decarboxylative arylation (metallaphotoredox catalysis) then kinetic resolution using n-BuLi/(+)-sparteine. This gave a range of piperazines with very high enantioselectivities. Further functionalizations gave enantioenriched 2,2-disubstituted piperazines, and either N-substituent can be removed selectively. Late-stage functionalizations of enantioenriched piperazine derivatives were demonstrated, including synthesis of a drug compound with glycogen synthase kinase (GSK)-3β inhibitor activity with potential for treating Alzheimer’s disease. |
---|