Cargando…
Snapshots of the first-step self-splicing of Tetrahymena ribozyme revealed by cryo-EM
Tetrahymena ribozyme is a group I intron, whose self-splicing is the result of two sequential ester-transfer reactions. To understand how it facilitates catalysis in the first self-splicing reaction, we used cryogenic electron microscopy (cryo-EM) to resolve the structures of L-16 Tetrahymena ribozy...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9943679/ https://www.ncbi.nlm.nih.gov/pubmed/36660826 http://dx.doi.org/10.1093/nar/gkac1268 |
Sumario: | Tetrahymena ribozyme is a group I intron, whose self-splicing is the result of two sequential ester-transfer reactions. To understand how it facilitates catalysis in the first self-splicing reaction, we used cryogenic electron microscopy (cryo-EM) to resolve the structures of L-16 Tetrahymena ribozyme complexed with a 11-nucleotide 5′-splice site analog substrate. Four conformations were achieved to 4.14, 3.18, 3.09 and 2.98 Å resolutions, respectively, corresponding to different splicing intermediates during the first enzymatic reaction. Comparison of these structures reveals structural alterations, including large conformational changes in IGS/IGSext (P1-P1ext duplex) and J5/4, as well as subtle local rearrangements in the G-binding site. These structural changes are required for the enzymatic activity of the Tetrahymena ribozyme. Our study demonstrates the ability of cryo-EM to capture dynamic RNA structural changes, ushering in a new era in the analysis of RNA structure-function by cryo-EM. |
---|