Cargando…
Batch alignment of single-cell transcriptomics data using deep metric learning
scRNA-seq has uncovered previously unappreciated levels of heterogeneity. With the increasing scale of scRNA-seq studies, the major challenge is correcting batch effect and accurately detecting the number of cell types, which is inevitable in human studies. The majority of scRNA-seq algorithms have...
Autores principales: | Yu, Xiaokang, Xu, Xinyi, Zhang, Jingxiao, Li, Xiangjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944958/ https://www.ncbi.nlm.nih.gov/pubmed/36810607 http://dx.doi.org/10.1038/s41467-023-36635-5 |
Ejemplares similares
-
Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
por: Li, Xiangjie, et al.
Publicado: (2020) -
BBKNN: fast batch alignment of single cell transcriptomes
por: Polański, Krzysztof, et al.
Publicado: (2019) -
A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics
por: Lakkis, Justin, et al.
Publicado: (2021) -
Alignment of spatial transcriptomics data using diffeomorphic metric mapping
por: Clifton, Kalen, et al.
Publicado: (2023) -
Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram
por: Biancalani, Tommaso, et al.
Publicado: (2021)