Cargando…

Modeling of Fabry disease nephropathy using patient derived human induced pluripotent stem cells and kidney organoid system

OBJECTIVES: To explore the possibility of kidney organoids generated using patient derived human induced pluripotent stem cells (hiPSC) for modeling of Fabry disease nephropathy (FDN). METHODS: First, we generated hiPSC line using peripheral blood mononuclear cells (PBMCs) from two male FD-patients...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Sheng, Fang, Xianying, Lee, Hanbi, Shin, Yoo Jin, Koh, Eun-Sil, Chung, Sungjin, Park, Hoon Suk, Lim, Sun Woo, Lee, Kang In, Lee, Jae Young, Yang, Chul Woo, Chung, Byung Ha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948377/
https://www.ncbi.nlm.nih.gov/pubmed/36814269
http://dx.doi.org/10.1186/s12967-023-03992-0
Descripción
Sumario:OBJECTIVES: To explore the possibility of kidney organoids generated using patient derived human induced pluripotent stem cells (hiPSC) for modeling of Fabry disease nephropathy (FDN). METHODS: First, we generated hiPSC line using peripheral blood mononuclear cells (PBMCs) from two male FD-patients with different types of GLA mutation: a classic type mutation (CMC-Fb-001) and a non-classic type (CMC-Fb-003) mutation. Second, we generated kidney organoids using wild-type (WT) hiPSC (WTC-11) and mutant hiPSCs (CMC-Fb-001 and CMC-Fb-003). We then compared alpha-galactosidase A (α-GalA) activity, deposition of globotriaosylceremide (Gb-3), and zebra body formation under electromicroscopy (EM). RESULTS: Both FD patients derived hiPSCs had the same mutations as those detected in PBMCs of patients, showing typical pluripotency markers, normal karyotyping, and successful tri-lineage differentiation. Kidney organoids generated using WT-hiPSC and both FD patients derived hiPSCs expressed typical nephron markers without structural deformity. Activity of α-GalA was decreased and deposition of Gb-3 was increased in FD patients derived hiPSCs and kidney organoids in comparison with WT, with such changes being far more significant in CMC-Fb-001 than in CMC-Fb-003. In EM finding, multi-lammelated inclusion body was detected in both CMC-Fb-001 and CMC-Fb-003 kidney organoids, but not in WT. CONCLUSIONS: Kidney organoids generated using hiPSCs from male FD patients might recapitulate the disease phenotype and represent the severity of FD according to the GLA mutation type. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-023-03992-0.