Cargando…

A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis

Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS biogenesis remains unresolved. Here, we present a parallel quantita...

Descripción completa

Detalles Bibliográficos
Autores principales: McShane, Erik, Couvillion, Mary, Ietswaart, Robert, Prakash, Gyan, Smalec, Brendan M., Soto, Iliana, Baxter-Koenigs, Autum R., Choquet, Karine, Churchman, L. Stirling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948965/
https://www.ncbi.nlm.nih.gov/pubmed/36824735
http://dx.doi.org/10.1101/2023.02.09.527880
_version_ 1784892886103359488
author McShane, Erik
Couvillion, Mary
Ietswaart, Robert
Prakash, Gyan
Smalec, Brendan M.
Soto, Iliana
Baxter-Koenigs, Autum R.
Choquet, Karine
Churchman, L. Stirling
author_facet McShane, Erik
Couvillion, Mary
Ietswaart, Robert
Prakash, Gyan
Smalec, Brendan M.
Soto, Iliana
Baxter-Koenigs, Autum R.
Choquet, Karine
Churchman, L. Stirling
author_sort McShane, Erik
collection PubMed
description Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared to nuclear mRNAs, mt-mRNAs were produced 700-fold higher, degraded 5-fold faster, and accumulated to 170-fold higher levels. Quantitative modeling and depletion of mitochondrial factors, LRPPRC and FASTKD5, identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation.
format Online
Article
Text
id pubmed-9948965
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-99489652023-02-24 A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis McShane, Erik Couvillion, Mary Ietswaart, Robert Prakash, Gyan Smalec, Brendan M. Soto, Iliana Baxter-Koenigs, Autum R. Choquet, Karine Churchman, L. Stirling bioRxiv Article Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared to nuclear mRNAs, mt-mRNAs were produced 700-fold higher, degraded 5-fold faster, and accumulated to 170-fold higher levels. Quantitative modeling and depletion of mitochondrial factors, LRPPRC and FASTKD5, identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation. Cold Spring Harbor Laboratory 2023-09-06 /pmc/articles/PMC9948965/ /pubmed/36824735 http://dx.doi.org/10.1101/2023.02.09.527880 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
McShane, Erik
Couvillion, Mary
Ietswaart, Robert
Prakash, Gyan
Smalec, Brendan M.
Soto, Iliana
Baxter-Koenigs, Autum R.
Choquet, Karine
Churchman, L. Stirling
A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis
title A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis
title_full A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis
title_fullStr A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis
title_full_unstemmed A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis
title_short A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis
title_sort kinetic dichotomy between mitochondrial and nuclear gene expression drives oxphos biogenesis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948965/
https://www.ncbi.nlm.nih.gov/pubmed/36824735
http://dx.doi.org/10.1101/2023.02.09.527880
work_keys_str_mv AT mcshaneerik akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT couvillionmary akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT ietswaartrobert akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT prakashgyan akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT smalecbrendanm akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT sotoiliana akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT baxterkoenigsautumr akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT choquetkarine akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT churchmanlstirling akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT mcshaneerik kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT couvillionmary kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT ietswaartrobert kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT prakashgyan kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT smalecbrendanm kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT sotoiliana kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT baxterkoenigsautumr kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT choquetkarine kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis
AT churchmanlstirling kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis