Cargando…
A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis
Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS biogenesis remains unresolved. Here, we present a parallel quantita...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948965/ https://www.ncbi.nlm.nih.gov/pubmed/36824735 http://dx.doi.org/10.1101/2023.02.09.527880 |
_version_ | 1784892886103359488 |
---|---|
author | McShane, Erik Couvillion, Mary Ietswaart, Robert Prakash, Gyan Smalec, Brendan M. Soto, Iliana Baxter-Koenigs, Autum R. Choquet, Karine Churchman, L. Stirling |
author_facet | McShane, Erik Couvillion, Mary Ietswaart, Robert Prakash, Gyan Smalec, Brendan M. Soto, Iliana Baxter-Koenigs, Autum R. Choquet, Karine Churchman, L. Stirling |
author_sort | McShane, Erik |
collection | PubMed |
description | Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared to nuclear mRNAs, mt-mRNAs were produced 700-fold higher, degraded 5-fold faster, and accumulated to 170-fold higher levels. Quantitative modeling and depletion of mitochondrial factors, LRPPRC and FASTKD5, identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation. |
format | Online Article Text |
id | pubmed-9948965 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-99489652023-02-24 A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis McShane, Erik Couvillion, Mary Ietswaart, Robert Prakash, Gyan Smalec, Brendan M. Soto, Iliana Baxter-Koenigs, Autum R. Choquet, Karine Churchman, L. Stirling bioRxiv Article Oxidative phosphorylation (OXPHOS) complexes, encoded by both mitochondrial and nuclear DNA, are essential producers of cellular ATP, but how nuclear and mitochondrial gene expression steps are coordinated to achieve balanced OXPHOS biogenesis remains unresolved. Here, we present a parallel quantitative analysis of the human nuclear and mitochondrial messenger RNA (mt-mRNA) life cycles, including transcript production, processing, ribosome association, and degradation. The kinetic rates of nearly every stage of gene expression differed starkly across compartments. Compared to nuclear mRNAs, mt-mRNAs were produced 700-fold higher, degraded 5-fold faster, and accumulated to 170-fold higher levels. Quantitative modeling and depletion of mitochondrial factors, LRPPRC and FASTKD5, identified critical points of mitochondrial regulatory control, revealing that the mitonuclear expression disparities intrinsically arise from the highly polycistronic nature of human mitochondrial pre-mRNA. We propose that resolving these differences requires a 100-fold slower mitochondrial translation rate, illuminating the mitoribosome as a nexus of mitonuclear co-regulation. Cold Spring Harbor Laboratory 2023-09-06 /pmc/articles/PMC9948965/ /pubmed/36824735 http://dx.doi.org/10.1101/2023.02.09.527880 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article McShane, Erik Couvillion, Mary Ietswaart, Robert Prakash, Gyan Smalec, Brendan M. Soto, Iliana Baxter-Koenigs, Autum R. Choquet, Karine Churchman, L. Stirling A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis |
title | A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis |
title_full | A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis |
title_fullStr | A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis |
title_full_unstemmed | A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis |
title_short | A kinetic dichotomy between mitochondrial and nuclear gene expression drives OXPHOS biogenesis |
title_sort | kinetic dichotomy between mitochondrial and nuclear gene expression drives oxphos biogenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9948965/ https://www.ncbi.nlm.nih.gov/pubmed/36824735 http://dx.doi.org/10.1101/2023.02.09.527880 |
work_keys_str_mv | AT mcshaneerik akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT couvillionmary akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT ietswaartrobert akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT prakashgyan akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT smalecbrendanm akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT sotoiliana akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT baxterkoenigsautumr akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT choquetkarine akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT churchmanlstirling akineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT mcshaneerik kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT couvillionmary kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT ietswaartrobert kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT prakashgyan kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT smalecbrendanm kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT sotoiliana kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT baxterkoenigsautumr kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT choquetkarine kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis AT churchmanlstirling kineticdichotomybetweenmitochondrialandnucleargeneexpressiondrivesoxphosbiogenesis |