Cargando…

A Novel Strategy to Enhance Antioxidant Content in Saccharomyces Cerevisiae Based on Oxygen Pressure

Antioxidant foods represent a potent lever to improve diets while creating value. Yet, their cultivation is often tied to a specific area and climate, limiting availability and increasing market cost. Therefore, microorganism-based antioxidant production emerges as a promising technology to solve th...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Na, Perré, Patrick, Michiels, Emilie, Pozzobon, Victor
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952505/
https://www.ncbi.nlm.nih.gov/pubmed/36829740
http://dx.doi.org/10.3390/bioengineering10020246
Descripción
Sumario:Antioxidant foods represent a potent lever to improve diets while creating value. Yet, their cultivation is often tied to a specific area and climate, limiting availability and increasing market cost. Therefore, microorganism-based antioxidant production emerges as a promising technology to solve these problems. In this view, a novel process was investigated for antioxidant accumulation in yeast culture. S. cerevisiae cells were exposed to various hyperbaric air conditions from 1 to 9 bar (A). Yeast cultures exhibited an increased reactive oxygen species content, which induced oxidative defense expression. After a few hours, reactive oxygen species levels decreased while antioxidant contents remained high, leading to a net increase in antioxidant power. At 6 bar (A), yeast achieved the highest net antioxidant power (phenolics content +48.3 ± 18.6 %, reducing power +120 ± 11.4 %) with an acceptable growth rate (0.27 h(−1)). Regarding time evolution, a 2 h exposure seems to be the optimum: cells have the lowest reactive oxygen species level while their antioxidant power is increased. From a biotechnological perspective, this finding highlights air pressure as an antioxidant-manipulating stress strategy. Moreover, the proposed process led to a patent that could potentially reduce energy and chemical consumption in such antioxidant accumulation processes.