Cargando…

Analysis of the Passage Times for Unfolding/Folding of the Adenine Riboswitch Aptamer

[Image: see text] The conformational transitions of the adenosine deaminase A-riboswitch aptamer both with and without ligand binding are investigated within the tenets of the generalized Langevin equation in a complex viscoelastic cellular environment. Steered molecular dynamics (SMD) simulations a...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Shivangi, Singh, Vishal, Biswas, Parbati
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9955275/
https://www.ncbi.nlm.nih.gov/pubmed/36855421
http://dx.doi.org/10.1021/acsphyschemau.1c00056
Descripción
Sumario:[Image: see text] The conformational transitions of the adenosine deaminase A-riboswitch aptamer both with and without ligand binding are investigated within the tenets of the generalized Langevin equation in a complex viscoelastic cellular environment. Steered molecular dynamics (SMD) simulations are performed to evaluate and compare the results of the first passage times (FPTs) with those obtained from the theory for the unfold and fold transitions of the aptamer. The results of the distribution of Kramers’s FPT reveal that the unfold-fold transitions are faster and hence more probable as compared to the fold-unfold transitions of the riboswitch aptamer for both ligand-bound and -unbound states. The transition path time is lower than Kramers’s FPT for the riboswitch aptamer as the transition path times for the unfold-fold transition of both without and with ligand binding are insensitive to the details of the exact mechanism of the transition events. However, Kramers’s FPTs show varied distributions which correspond to different transition pathways, unlike the transition path times. The mean FPT increases with an increase in the complexity of the cellular environment. The results of Kramers’s FPT, transition path time distribution, and mean FPT obtained from our calculations qualitatively match with those obtained from the SMD simulations. Analytically derived values of the mean transition path time show good quantitative agreement with those estimated from the single-molecule force spectroscopy experiments for higher barrier heights.