Cargando…

Copy number footprints of platinum-based anticancer therapies

Recently, distinct mutational footprints observed in metastatic tumors, secondary malignancies and normal human tissues have been demonstrated to be caused by the exposure to several chemotherapeutic drugs. These characteristic mutations originate from specific lesions caused by these chemicals to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Gonzalez, Santiago, Lopez-Bigas, Nuria, Gonzalez-Perez, Abel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956877/
https://www.ncbi.nlm.nih.gov/pubmed/36780550
http://dx.doi.org/10.1371/journal.pgen.1010634
Descripción
Sumario:Recently, distinct mutational footprints observed in metastatic tumors, secondary malignancies and normal human tissues have been demonstrated to be caused by the exposure to several chemotherapeutic drugs. These characteristic mutations originate from specific lesions caused by these chemicals to the DNA of exposed cells. However, it is unknown whether the exposure to these chemotherapies leads to a specific footprint of larger chromosomal aberrations. Here, we address this question exploiting whole genome sequencing data of metastatic tumors obtained from patients exposed to different chemotherapeutic drugs. As a result, we discovered a specific copy number footprint across tumors from patients previously exposed to platinum-based therapies. This footprint is characterized by a significant increase in the number of chromosomal fragments of copy number 1–4 and size smaller than 10 Mb in exposed tumors with respect to their unexposed counterparts (median 14–387% greater across tumor types). The number of chromosomal fragments characteristic of the platinum-associated CN footprint increases significantly with the activity of the well known platinum-related footprint of single nucleotide variants across exposed tumors.