Cargando…
Exact Decomposition of Optimal Control Problems via Simultaneous Block Diagonalization of Matrices
In this paper, we consider optimal control problems (OCPs) applied to large-scale linear dynamical systems with a large number of states and inputs. We attempt to reduce such problems into a set of independent OCPs of lower dimensions. Our decomposition is ‘exact’ in the sense that it preserves all...
Autores principales: | NAZERIAN, AMIRHOSSEIN, BHATTA, KSHITIJ, SORRENTINO, FRANCESCO |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9956949/ https://www.ncbi.nlm.nih.gov/pubmed/36845944 http://dx.doi.org/10.1109/ojcsys.2022.3231553 |
Ejemplares similares
-
Supermodal Decomposition of the Linear Swing Equation for Multilayer Networks
por: BHATTA, KSHITIJ, et al.
Publicado: (2022) -
Off-diagonal Bethe ansatz for exactly solvable models
por: Wang, Yupeng, et al.
Publicado: (2015) -
Error bounds for linear complementarity problems of weakly chained diagonally dominant B-matrices
por: Wang, Feng
Publicado: (2017) -
On the diagonalization of principal submatrices of positive-definitive symmetric matrices, pt 1; properties of the diagonal elements
por: Daneels, A
Publicado: (1972) -
Empirical Bayes method for reducing false discovery rates of correlation matrices with block diagonal structure
por: Pacini, Clare, et al.
Publicado: (2017)