Cargando…
Development of Novel Foxtail Millet-Based Nutri-Rich Instant Noodles: Chemical and Quality Characteristics
Noodles are a popular snack mainly produced from wheat flour; however, the low contents of protein, minerals, and lysine are a concern. Therefore, this research developed nutri-rich instant noodles by using foxtail millet (FTM) (Setaria italic) flour to improve the contents of protein and nutrients...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957309/ https://www.ncbi.nlm.nih.gov/pubmed/36832894 http://dx.doi.org/10.3390/foods12040819 |
_version_ | 1784894794621779968 |
---|---|
author | Meherunnahar, Mst. Ahmed, Tanvir Chowdhury, Razia Sultana Miah, Mohammed Abdus Satter Sridhar, Kandi Inbaraj, Baskaran Stephen Hoque, Md. Mozammel Sharma, Minaxi |
author_facet | Meherunnahar, Mst. Ahmed, Tanvir Chowdhury, Razia Sultana Miah, Mohammed Abdus Satter Sridhar, Kandi Inbaraj, Baskaran Stephen Hoque, Md. Mozammel Sharma, Minaxi |
author_sort | Meherunnahar, Mst. |
collection | PubMed |
description | Noodles are a popular snack mainly produced from wheat flour; however, the low contents of protein, minerals, and lysine are a concern. Therefore, this research developed nutri-rich instant noodles by using foxtail millet (FTM) (Setaria italic) flour to improve the contents of protein and nutrients and increase its commercial importance. FTM flour was mixed with wheat flour (Triticum aestivum) at a ratio of 0:100, 30:60, 40:50, and 50:40, and the samples were named as control, FTM30, FTM40, and FTM50 noodles, respectively. Mushroom (Pleurotus ostreatus) and rice bran (Oryza sativa L.) flour were added at a percentage of 5% to all the composite noodles (FTM30, FTM40, and FTM50 noodles). The contents of biochemicals, minerals, and amino acids, as well as the organoleptic properties of the noodles, were examined and compared with wheat flour as a control. The results revealed that the carbohydrate (CHO) content of FTM50 noodles was significantly lower (p < 0.05) than all the developed and five commercial noodles named A-1, A-2, A-3, A-4, and A-5. Moreover, the FTM noodles had significantly higher levels of protein, fiber, ash, calcium, and phosphorous than the control and commercial noodles. The percentage of lysine calculated protein efficiency ratio (PER), essential amino acid index (EAAI), biological value (BV), and chemical score (CS) of FTM50 noodles were also higher than that of the commercial noodles. The total bacterial count was nil for the FTM50 noodles, and the organoleptic properties were consistent with those of acceptable standards. The results could encourage the application of FTM flours for the development of variety and value-added noodles with enhanced level of nutrients. |
format | Online Article Text |
id | pubmed-9957309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99573092023-02-25 Development of Novel Foxtail Millet-Based Nutri-Rich Instant Noodles: Chemical and Quality Characteristics Meherunnahar, Mst. Ahmed, Tanvir Chowdhury, Razia Sultana Miah, Mohammed Abdus Satter Sridhar, Kandi Inbaraj, Baskaran Stephen Hoque, Md. Mozammel Sharma, Minaxi Foods Article Noodles are a popular snack mainly produced from wheat flour; however, the low contents of protein, minerals, and lysine are a concern. Therefore, this research developed nutri-rich instant noodles by using foxtail millet (FTM) (Setaria italic) flour to improve the contents of protein and nutrients and increase its commercial importance. FTM flour was mixed with wheat flour (Triticum aestivum) at a ratio of 0:100, 30:60, 40:50, and 50:40, and the samples were named as control, FTM30, FTM40, and FTM50 noodles, respectively. Mushroom (Pleurotus ostreatus) and rice bran (Oryza sativa L.) flour were added at a percentage of 5% to all the composite noodles (FTM30, FTM40, and FTM50 noodles). The contents of biochemicals, minerals, and amino acids, as well as the organoleptic properties of the noodles, were examined and compared with wheat flour as a control. The results revealed that the carbohydrate (CHO) content of FTM50 noodles was significantly lower (p < 0.05) than all the developed and five commercial noodles named A-1, A-2, A-3, A-4, and A-5. Moreover, the FTM noodles had significantly higher levels of protein, fiber, ash, calcium, and phosphorous than the control and commercial noodles. The percentage of lysine calculated protein efficiency ratio (PER), essential amino acid index (EAAI), biological value (BV), and chemical score (CS) of FTM50 noodles were also higher than that of the commercial noodles. The total bacterial count was nil for the FTM50 noodles, and the organoleptic properties were consistent with those of acceptable standards. The results could encourage the application of FTM flours for the development of variety and value-added noodles with enhanced level of nutrients. MDPI 2023-02-14 /pmc/articles/PMC9957309/ /pubmed/36832894 http://dx.doi.org/10.3390/foods12040819 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Meherunnahar, Mst. Ahmed, Tanvir Chowdhury, Razia Sultana Miah, Mohammed Abdus Satter Sridhar, Kandi Inbaraj, Baskaran Stephen Hoque, Md. Mozammel Sharma, Minaxi Development of Novel Foxtail Millet-Based Nutri-Rich Instant Noodles: Chemical and Quality Characteristics |
title | Development of Novel Foxtail Millet-Based Nutri-Rich Instant Noodles: Chemical and Quality Characteristics |
title_full | Development of Novel Foxtail Millet-Based Nutri-Rich Instant Noodles: Chemical and Quality Characteristics |
title_fullStr | Development of Novel Foxtail Millet-Based Nutri-Rich Instant Noodles: Chemical and Quality Characteristics |
title_full_unstemmed | Development of Novel Foxtail Millet-Based Nutri-Rich Instant Noodles: Chemical and Quality Characteristics |
title_short | Development of Novel Foxtail Millet-Based Nutri-Rich Instant Noodles: Chemical and Quality Characteristics |
title_sort | development of novel foxtail millet-based nutri-rich instant noodles: chemical and quality characteristics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957309/ https://www.ncbi.nlm.nih.gov/pubmed/36832894 http://dx.doi.org/10.3390/foods12040819 |
work_keys_str_mv | AT meherunnaharmst developmentofnovelfoxtailmilletbasednutririchinstantnoodleschemicalandqualitycharacteristics AT ahmedtanvir developmentofnovelfoxtailmilletbasednutririchinstantnoodleschemicalandqualitycharacteristics AT chowdhuryraziasultana developmentofnovelfoxtailmilletbasednutririchinstantnoodleschemicalandqualitycharacteristics AT miahmohammedabdussatter developmentofnovelfoxtailmilletbasednutririchinstantnoodleschemicalandqualitycharacteristics AT sridharkandi developmentofnovelfoxtailmilletbasednutririchinstantnoodleschemicalandqualitycharacteristics AT inbarajbaskaranstephen developmentofnovelfoxtailmilletbasednutririchinstantnoodleschemicalandqualitycharacteristics AT hoquemdmozammel developmentofnovelfoxtailmilletbasednutririchinstantnoodleschemicalandqualitycharacteristics AT sharmaminaxi developmentofnovelfoxtailmilletbasednutririchinstantnoodleschemicalandqualitycharacteristics |