Fusing clinical and image data for detecting the severity level of hospitalized symptomatic COVID-19 patients using hierarchical model
PURPOSE: Based on medical reports, it is hard to find levels of different hospitalized symptomatic COVID-19 patients according to their features in a short time. Besides, there are common and special features for COVID-19 patients at different levels based on physicians’ knowledge that make diagnosi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957693/ http://dx.doi.org/10.1007/s42600-023-00268-w |
_version_ | 1784894883949969408 |
---|---|
author | Ershadi, Mohammad Mahdi Rise, Zeinab Rahimi |
author_facet | Ershadi, Mohammad Mahdi Rise, Zeinab Rahimi |
author_sort | Ershadi, Mohammad Mahdi |
collection | PubMed |
description | PURPOSE: Based on medical reports, it is hard to find levels of different hospitalized symptomatic COVID-19 patients according to their features in a short time. Besides, there are common and special features for COVID-19 patients at different levels based on physicians’ knowledge that make diagnosis difficult. For this purpose, a hierarchical model is proposed in this paper based on experts’ knowledge, fuzzy C-mean (FCM) clustering, and adaptive neuro-fuzzy inference system (ANFIS) classifier. METHODS: Experts considered a special set of features for different groups of COVID-19 patients to find their treatment plans. Accordingly, the structure of the proposed hierarchical model is designed based on experts’ knowledge. In the proposed model, we applied clustering methods to patients’ data to determine some clusters. Then, we learn classifiers for each cluster in a hierarchical model. Regarding different common and special features of patients, FCM is considered for the clustering method. Besides, ANFIS had better performances than other classification methods. Therefore, FCM and ANFIS were considered to design the proposed hierarchical model. FCM finds the membership degree of each patient’s data based on common and special features of different clusters to reinforce the ANFIS classifier. Next, ANFIS identifies the need of hospitalized symptomatic COVID-19 patients to ICU and to find whether or not they are in the end-stage (mortality target class). Two real datasets about COVID-19 patients are analyzed in this paper using the proposed model. One of these datasets had only clinical features and another dataset had both clinical and image features. Therefore, some appropriate features are extracted using some image processing and deep learning methods. RESULTS: According to the results and statistical test, the proposed model has the best performance among other utilized classifiers. Its accuracies based on clinical features of the first and second datasets are 92% and 90% to find the ICU target class. Extracted features of image data increase the accuracy by 94%. CONCLUSION: The accuracy of this model is even better for detecting the mortality target class among different classifiers in this paper and the literature review. Besides, this model is compatible with utilized datasets about COVID-19 patients based on clinical data and both clinical and image data, as well. HIGHLIGHTS: • A new hierarchical model is proposed using ANFIS classifiers and FCM clustering method in this paper. Its structure is designed based on experts’ knowledge and real medical process. FCM reinforces the ANFIS classification learning phase based on the features of COVID-19 patients. • Two real datasets about COVID-19 patients are studied in this paper. One of these datasets has both clinical and image data. Therefore, appropriate features are extracted based on its image data and considered with available meaningful clinical data. Different levels of hospitalized symptomatic COVID-19 patients are considered in this paper including the need of patients to ICU and whether or not they are in end-stage. • Well-known classification methods including case-based reasoning (CBR), decision tree, convolutional neural networks (CNN), K-nearest neighbors (KNN), learning vector quantization (LVQ), multi-layer perceptron (MLP), Naive Bayes (NB), radial basis function network (RBF), support vector machine (SVM), recurrent neural networks (RNN), fuzzy type-I inference system (FIS), and adaptive neuro-fuzzy inference system (ANFIS) are designed for these datasets and their results are analyzed for different random groups of the train and test data; • According to unbalanced utilized datasets, different performances of classifiers including accuracy, sensitivity, specificity, precision, F-score, and G-mean are compared to find the best classifier. ANFIS classifiers have the best results for both datasets. • To reduce the computational time, the effects of the Principal Component Analysis (PCA) feature reduction method are studied on the performances of the proposed model and classifiers. According to the results and statistical test, the proposed hierarchical model has the best performances among other utilized classifiers. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42600-023-00268-w. |
format | Online Article Text |
id | pubmed-9957693 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-99576932023-02-28 Fusing clinical and image data for detecting the severity level of hospitalized symptomatic COVID-19 patients using hierarchical model Ershadi, Mohammad Mahdi Rise, Zeinab Rahimi Res. Biomed. Eng. Original Article PURPOSE: Based on medical reports, it is hard to find levels of different hospitalized symptomatic COVID-19 patients according to their features in a short time. Besides, there are common and special features for COVID-19 patients at different levels based on physicians’ knowledge that make diagnosis difficult. For this purpose, a hierarchical model is proposed in this paper based on experts’ knowledge, fuzzy C-mean (FCM) clustering, and adaptive neuro-fuzzy inference system (ANFIS) classifier. METHODS: Experts considered a special set of features for different groups of COVID-19 patients to find their treatment plans. Accordingly, the structure of the proposed hierarchical model is designed based on experts’ knowledge. In the proposed model, we applied clustering methods to patients’ data to determine some clusters. Then, we learn classifiers for each cluster in a hierarchical model. Regarding different common and special features of patients, FCM is considered for the clustering method. Besides, ANFIS had better performances than other classification methods. Therefore, FCM and ANFIS were considered to design the proposed hierarchical model. FCM finds the membership degree of each patient’s data based on common and special features of different clusters to reinforce the ANFIS classifier. Next, ANFIS identifies the need of hospitalized symptomatic COVID-19 patients to ICU and to find whether or not they are in the end-stage (mortality target class). Two real datasets about COVID-19 patients are analyzed in this paper using the proposed model. One of these datasets had only clinical features and another dataset had both clinical and image features. Therefore, some appropriate features are extracted using some image processing and deep learning methods. RESULTS: According to the results and statistical test, the proposed model has the best performance among other utilized classifiers. Its accuracies based on clinical features of the first and second datasets are 92% and 90% to find the ICU target class. Extracted features of image data increase the accuracy by 94%. CONCLUSION: The accuracy of this model is even better for detecting the mortality target class among different classifiers in this paper and the literature review. Besides, this model is compatible with utilized datasets about COVID-19 patients based on clinical data and both clinical and image data, as well. HIGHLIGHTS: • A new hierarchical model is proposed using ANFIS classifiers and FCM clustering method in this paper. Its structure is designed based on experts’ knowledge and real medical process. FCM reinforces the ANFIS classification learning phase based on the features of COVID-19 patients. • Two real datasets about COVID-19 patients are studied in this paper. One of these datasets has both clinical and image data. Therefore, appropriate features are extracted based on its image data and considered with available meaningful clinical data. Different levels of hospitalized symptomatic COVID-19 patients are considered in this paper including the need of patients to ICU and whether or not they are in end-stage. • Well-known classification methods including case-based reasoning (CBR), decision tree, convolutional neural networks (CNN), K-nearest neighbors (KNN), learning vector quantization (LVQ), multi-layer perceptron (MLP), Naive Bayes (NB), radial basis function network (RBF), support vector machine (SVM), recurrent neural networks (RNN), fuzzy type-I inference system (FIS), and adaptive neuro-fuzzy inference system (ANFIS) are designed for these datasets and their results are analyzed for different random groups of the train and test data; • According to unbalanced utilized datasets, different performances of classifiers including accuracy, sensitivity, specificity, precision, F-score, and G-mean are compared to find the best classifier. ANFIS classifiers have the best results for both datasets. • To reduce the computational time, the effects of the Principal Component Analysis (PCA) feature reduction method are studied on the performances of the proposed model and classifiers. According to the results and statistical test, the proposed hierarchical model has the best performances among other utilized classifiers. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42600-023-00268-w. Springer International Publishing 2023-02-25 2023 /pmc/articles/PMC9957693/ http://dx.doi.org/10.1007/s42600-023-00268-w Text en © The Author(s), under exclusive licence to The Brazilian Society of Biomedical Engineering 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Original Article Ershadi, Mohammad Mahdi Rise, Zeinab Rahimi Fusing clinical and image data for detecting the severity level of hospitalized symptomatic COVID-19 patients using hierarchical model |
title | Fusing clinical and image data for detecting the severity level of hospitalized symptomatic COVID-19 patients using hierarchical model |
title_full | Fusing clinical and image data for detecting the severity level of hospitalized symptomatic COVID-19 patients using hierarchical model |
title_fullStr | Fusing clinical and image data for detecting the severity level of hospitalized symptomatic COVID-19 patients using hierarchical model |
title_full_unstemmed | Fusing clinical and image data for detecting the severity level of hospitalized symptomatic COVID-19 patients using hierarchical model |
title_short | Fusing clinical and image data for detecting the severity level of hospitalized symptomatic COVID-19 patients using hierarchical model |
title_sort | fusing clinical and image data for detecting the severity level of hospitalized symptomatic covid-19 patients using hierarchical model |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9957693/ http://dx.doi.org/10.1007/s42600-023-00268-w |
work_keys_str_mv | AT ershadimohammadmahdi fusingclinicalandimagedatafordetectingtheseveritylevelofhospitalizedsymptomaticcovid19patientsusinghierarchicalmodel AT risezeinabrahimi fusingclinicalandimagedatafordetectingtheseveritylevelofhospitalizedsymptomaticcovid19patientsusinghierarchicalmodel |