Cargando…
Comparison of Seven Non-Linear Mixed Effect Model-Based Approaches to Test for Treatment Effect
Analyses of longitudinal data with non-linear mixed-effects models (NLMEM) are typically associated with high power, but sometimes at the cost of inflated type I error. Approaches to overcome this problem were published recently, such as model-averaging across drug models (MAD), individual model-ave...
Autores principales: | Chasseloup, Estelle, Karlsson, Mats O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9959233/ https://www.ncbi.nlm.nih.gov/pubmed/36839782 http://dx.doi.org/10.3390/pharmaceutics15020460 |
Ejemplares similares
-
Assessing Treatment Effects with Pharmacometric Models: A New Method that Addresses Problems with Standard Assessments
por: Chasseloup, Estelle, et al.
Publicado: (2021) -
Comparison of covariate selection methods with correlated covariates: prior information versus data information, or a mixture of both?
por: Chasseloup, Estelle, et al.
Publicado: (2020) -
Generation and application of avatars in pharmacometric modelling
por: Chasseloup, Estelle, et al.
Publicado: (2023) -
Development of visual predictive checks accounting for multimodal parameter distributions in mixture models
por: Arshad, Usman, et al.
Publicado: (2019) -
Random effects structure for testing interactions in linear mixed-effects models
por: Barr, Dale J.
Publicado: (2013)