Cargando…

An All-Silicon Resonant Pressure Microsensor Based on Eutectic Bonding

In this paper, an all-Si resonant pressure microsensor based on eutectic bonding was developed, which can eliminate thermal expansion coefficient mismatches and residual thermal stresses during the bonding process. More specifically, the resonant pressure microsensor included an SOI wafer with a pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Siyuan, Qin, Jiaxin, Lu, Yulan, Xie, Bo, Wang, Junbo, Chen, Deyong, Chen, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9960247/
https://www.ncbi.nlm.nih.gov/pubmed/36838141
http://dx.doi.org/10.3390/mi14020441
Descripción
Sumario:In this paper, an all-Si resonant pressure microsensor based on eutectic bonding was developed, which can eliminate thermal expansion coefficient mismatches and residual thermal stresses during the bonding process. More specifically, the resonant pressure microsensor included an SOI wafer with a pressure-sensitive film embedded with resonators, which was eutectically bonded with a silicon cap for vacuum encapsulation. The all-Si resonant pressure microsensor was carefully designed and simulated numerically, where the use of the silicon cap was shown to effectively address temperature disturbances of the microsensor. The microsensor was then fabricated based on MEMS processes where eutectic bonding was adopted to link the SOI wafer and the silicon cap. The characterization results showed that the temperature disturbances of the resonant pressure microsensor encapsulated with the silicon cap were quantified as −0.82 Hz/°C of the central resonator and −2.36 Hz/°C of the side resonator within a temperature range from −40 °C to 80 °C, which were at least eight times lower than that of the microsensor encapsulated with the glass cap. Compared with the microsensor using the glass cap, the all-silicon microsensor demonstrated an accuracy improvement from 0.03% FS to 0.01% FS and a reduction in short-term frequency fluctuations from 3.2 Hz to 1.5 Hz.