Cargando…
Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses
Within the viral genome, short stretches of homologous host pathogen sequences (SSHHPS) span the protease cleavage sites. To identify host proteins that may be cleaved during infection, we searched the human proteome for viral protease cleavage sites (~20 amino acids). We developed a sequence-to-sym...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961674/ https://www.ncbi.nlm.nih.gov/pubmed/36851756 http://dx.doi.org/10.3390/v15020542 |
_version_ | 1784895813213749248 |
---|---|
author | Doctor, Katarina Z. Gilmour, Elizabeth Recarte, Marilyn Beatty, Trinity R. Shifa, Intisar Stangel, Michaela Schwisow, Jacob Leary, Dagmar H. Legler, Patricia M. |
author_facet | Doctor, Katarina Z. Gilmour, Elizabeth Recarte, Marilyn Beatty, Trinity R. Shifa, Intisar Stangel, Michaela Schwisow, Jacob Leary, Dagmar H. Legler, Patricia M. |
author_sort | Doctor, Katarina Z. |
collection | PubMed |
description | Within the viral genome, short stretches of homologous host pathogen sequences (SSHHPS) span the protease cleavage sites. To identify host proteins that may be cleaved during infection, we searched the human proteome for viral protease cleavage sites (~20 amino acids). We developed a sequence-to-symptom tool, automating the search and pairing process. We used the viral protein sequence, PHI-BLAST, and UniProt database for gene ontologies and disease relationships. We applied the tool to nine neuroinvasive viruses: Venezuelan and Eastern Equine encephalitis virus (VEEV, EEEV); severe acute respiratory syndrome (SARS, SARS-CoV-2); Middle East respiratory syndrome (MERS); EV-71; Japanese encephalitis virus (JEV); West Nile (WNV); and Zika (ZIKV). A comparison of the hits identified a protein common to all nine viruses called ADGRA2 (GPR124). ADGRA2 was a predicted hit of the 3CL main protease and papain-like protease (PLpro) of SARS-CoV-2. ADGRA2 is an adhesion G protein-coupled receptor and a key endothelial regulator of brain-specific angiogenesis. It is a Wnt7A/Wnt7B specific coactivator of beta-catenin signaling and is essential for blood–brain barrier (BBB) integrity in central nervous system (CNS) diseases. We show the cleavage of the predicted sequences in MYOM1, VWF by the SARS-CoV-2 PLpro; DNAH8 (dynein) by the MERS PLpro; ADGRA2 by the alphaviral VEEV nsP2 protease; and POT1 by the SARS-CoV-2 and MERS PLpro. |
format | Online Article Text |
id | pubmed-9961674 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99616742023-02-26 Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses Doctor, Katarina Z. Gilmour, Elizabeth Recarte, Marilyn Beatty, Trinity R. Shifa, Intisar Stangel, Michaela Schwisow, Jacob Leary, Dagmar H. Legler, Patricia M. Viruses Article Within the viral genome, short stretches of homologous host pathogen sequences (SSHHPS) span the protease cleavage sites. To identify host proteins that may be cleaved during infection, we searched the human proteome for viral protease cleavage sites (~20 amino acids). We developed a sequence-to-symptom tool, automating the search and pairing process. We used the viral protein sequence, PHI-BLAST, and UniProt database for gene ontologies and disease relationships. We applied the tool to nine neuroinvasive viruses: Venezuelan and Eastern Equine encephalitis virus (VEEV, EEEV); severe acute respiratory syndrome (SARS, SARS-CoV-2); Middle East respiratory syndrome (MERS); EV-71; Japanese encephalitis virus (JEV); West Nile (WNV); and Zika (ZIKV). A comparison of the hits identified a protein common to all nine viruses called ADGRA2 (GPR124). ADGRA2 was a predicted hit of the 3CL main protease and papain-like protease (PLpro) of SARS-CoV-2. ADGRA2 is an adhesion G protein-coupled receptor and a key endothelial regulator of brain-specific angiogenesis. It is a Wnt7A/Wnt7B specific coactivator of beta-catenin signaling and is essential for blood–brain barrier (BBB) integrity in central nervous system (CNS) diseases. We show the cleavage of the predicted sequences in MYOM1, VWF by the SARS-CoV-2 PLpro; DNAH8 (dynein) by the MERS PLpro; ADGRA2 by the alphaviral VEEV nsP2 protease; and POT1 by the SARS-CoV-2 and MERS PLpro. MDPI 2023-02-15 /pmc/articles/PMC9961674/ /pubmed/36851756 http://dx.doi.org/10.3390/v15020542 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Doctor, Katarina Z. Gilmour, Elizabeth Recarte, Marilyn Beatty, Trinity R. Shifa, Intisar Stangel, Michaela Schwisow, Jacob Leary, Dagmar H. Legler, Patricia M. Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses |
title | Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses |
title_full | Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses |
title_fullStr | Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses |
title_full_unstemmed | Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses |
title_short | Automated SSHHPS Analysis Predicts a Potential Host Protein Target Common to Several Neuroinvasive (+)ssRNA Viruses |
title_sort | automated sshhps analysis predicts a potential host protein target common to several neuroinvasive (+)ssrna viruses |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9961674/ https://www.ncbi.nlm.nih.gov/pubmed/36851756 http://dx.doi.org/10.3390/v15020542 |
work_keys_str_mv | AT doctorkatarinaz automatedsshhpsanalysispredictsapotentialhostproteintargetcommontoseveralneuroinvasivessrnaviruses AT gilmourelizabeth automatedsshhpsanalysispredictsapotentialhostproteintargetcommontoseveralneuroinvasivessrnaviruses AT recartemarilyn automatedsshhpsanalysispredictsapotentialhostproteintargetcommontoseveralneuroinvasivessrnaviruses AT beattytrinityr automatedsshhpsanalysispredictsapotentialhostproteintargetcommontoseveralneuroinvasivessrnaviruses AT shifaintisar automatedsshhpsanalysispredictsapotentialhostproteintargetcommontoseveralneuroinvasivessrnaviruses AT stangelmichaela automatedsshhpsanalysispredictsapotentialhostproteintargetcommontoseveralneuroinvasivessrnaviruses AT schwisowjacob automatedsshhpsanalysispredictsapotentialhostproteintargetcommontoseveralneuroinvasivessrnaviruses AT learydagmarh automatedsshhpsanalysispredictsapotentialhostproteintargetcommontoseveralneuroinvasivessrnaviruses AT leglerpatriciam automatedsshhpsanalysispredictsapotentialhostproteintargetcommontoseveralneuroinvasivessrnaviruses |