Cargando…

Precision Landing of a Quadcopter Drone by Smartphone Video Guidance Sensor in a GPS-Denied Environment

This paper describes the deployment, integration, and demonstration of a Smartphone Video Guidance Sensor (SVGS) as a novel technology for autonomous 6-DOF proximity maneuvers and precision landing of a quadcopter drone. The proposed approach uses a vision-based photogrammetric position and attitude...

Descripción completa

Detalles Bibliográficos
Autores principales: Bautista, Nicolas, Gutierrez, Hector, Inness, John, Rakoczy, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962314/
https://www.ncbi.nlm.nih.gov/pubmed/36850531
http://dx.doi.org/10.3390/s23041934
Descripción
Sumario:This paper describes the deployment, integration, and demonstration of a Smartphone Video Guidance Sensor (SVGS) as a novel technology for autonomous 6-DOF proximity maneuvers and precision landing of a quadcopter drone. The proposed approach uses a vision-based photogrammetric position and attitude sensor (SVGS) to estimate the position of a landing target after video capture. A visual inertial odometry sensor (VIO) is used to provide position estimates of the UAV in a ground coordinate system during flight on a GPS-denied environment. The integration of both SVGS and VIO sensors enables the accurate updating of position setpoints during landing, providing improved performance compared with VIO-only landing, as shown in landing experiments. The proposed technique also shows significant operational advantages compared with state-of-the-art sensors for indoor landing, such as those based on augmented reality (AR) markers.