Cargando…
Learning 3D Bipedal Walking with Planned Footsteps and Fourier Series Periodic Gait Planning
Reinforcement learning provides a general framework for achieving autonomy and diversity in traditional robot motion control. Robots must walk dynamically to adapt to different ground environments in complex environments. To achieve walking ability similar to that of humans, robots must be able to p...
Autores principales: | Wang, Song, Piao, Songhao, Leng, Xiaokun, He, Zhicheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962549/ https://www.ncbi.nlm.nih.gov/pubmed/36850469 http://dx.doi.org/10.3390/s23041873 |
Ejemplares similares
-
Real-Time Footprint Planning and Model Predictive Control Based Method for Stable Biped Walking
por: Wang, Song, et al.
Publicado: (2022) -
Uneven Terrain Walking with Linear and Angular Momentum Allocation
por: He, Zhicheng, et al.
Publicado: (2023) -
Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems
por: Mikolajczyk, Tadeusz, et al.
Publicado: (2022) -
Modeling, simulation and optimization of bipedal walking
por: Mombaur, Katja, et al.
Publicado: (2013) -
Common motor patterns of asymmetrical and symmetrical bipedal gaits
por: Pequera, Germán, et al.
Publicado: (2021)