Cargando…

In Silico and In Vitro Screening of Serine Racemase Agonist and In Vivo Efficacy on Alzheimer’s Disease Drosophila melanogaster

The NMDA receptor hypofunction has been implicated in schizophrenia, memory impairment, and Alzheimer’s disease. Modulating the abundance of D-serine, a co-agonist of the NMDA receptor, is a strategy to treat symptoms of the NMDA receptor hypofunction. In contrast to D-amino acid oxidase (DAAO) inhi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Chih-Hao, Chang, Hao-Teng, Hsu, Lee-Fen, Lee, Ming-Hsueh, Cheng, Jack, Wu, Dong Chuan, Lin, Wei-Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962741/
https://www.ncbi.nlm.nih.gov/pubmed/37259423
http://dx.doi.org/10.3390/ph16020280
Descripción
Sumario:The NMDA receptor hypofunction has been implicated in schizophrenia, memory impairment, and Alzheimer’s disease. Modulating the abundance of D-serine, a co-agonist of the NMDA receptor, is a strategy to treat symptoms of the NMDA receptor hypofunction. In contrast to D-amino acid oxidase (DAAO) inhibitors, which aim at decreasing the loss of D-serine, this study tried to identify serine racemase (SRR) agonists, which boost the conversion of L-serine to D-serine. We used holo and apo structures of human SRR for the molecular docking against the National Cancer Institute (NCI) and ZINC compound databases and validated their efficacy by in vitro SRR activity assay. We identified NSC294149 (2-amino-3-(3-nitroimidazo[1,2-a]pyridin-2-yl)sulfanylpropanoic acid) as a potential SRR agonist and confirmed its amelioration of the hazard ratio of survival of the AD model of fruit fly (Drosophila melanogaster). These results suggest that the SRR agonist could be a drug design target against the NMDA receptor hypofunction symptoms.