Cargando…
PKD autoinhibition in trans regulates activation loop autophosphorylation in cis
Phosphorylation is a ubiquitous mechanism by which signals are transduced in cells. Protein kinases, enzymes that catalyze the phosphotransfer reaction are, themselves, often regulated by phosphorylation. Paradoxically, however, a substantial fraction of more than 500 human protein kinases are capab...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962925/ https://www.ncbi.nlm.nih.gov/pubmed/36745811 http://dx.doi.org/10.1073/pnas.2212909120 |
_version_ | 1784896123413987328 |
---|---|
author | Reinhardt, Ronja Hirzel, Kai Link, Gisela Eisler, Stephan A. Hägele, Tanja Parson, Matthew A. H. Burke, John E. Hausser, Angelika Leonard, Thomas A. |
author_facet | Reinhardt, Ronja Hirzel, Kai Link, Gisela Eisler, Stephan A. Hägele, Tanja Parson, Matthew A. H. Burke, John E. Hausser, Angelika Leonard, Thomas A. |
author_sort | Reinhardt, Ronja |
collection | PubMed |
description | Phosphorylation is a ubiquitous mechanism by which signals are transduced in cells. Protein kinases, enzymes that catalyze the phosphotransfer reaction are, themselves, often regulated by phosphorylation. Paradoxically, however, a substantial fraction of more than 500 human protein kinases are capable of catalyzing their own activation loop phosphorylation. Commonly, these kinases perform this autophosphorylation reaction in trans, whereby transient dimerization leads to the mutual phosphorylation of the activation loop of the opposing protomer. In this study, we demonstrate that protein kinase D (PKD) is regulated by the inverse mechanism of dimerization-mediated trans-autoinhibition, followed by activation loop autophosphorylation in cis. We show that PKD forms a stable face-to-face homodimer that is incapable of either autophosphorylation or substrate phosphorylation. Dissociation of this trans-autoinhibited dimer results in activation loop autophosphorylation, which occurs exclusively in cis. Phosphorylation serves to increase PKD activity and prevent trans-autoinhibition, thereby switching PKD on. Our findings not only reveal the mechanism of PKD regulation but also have profound implications for the regulation of many other eukaryotic kinases. |
format | Online Article Text |
id | pubmed-9962925 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-99629252023-02-26 PKD autoinhibition in trans regulates activation loop autophosphorylation in cis Reinhardt, Ronja Hirzel, Kai Link, Gisela Eisler, Stephan A. Hägele, Tanja Parson, Matthew A. H. Burke, John E. Hausser, Angelika Leonard, Thomas A. Proc Natl Acad Sci U S A Biological Sciences Phosphorylation is a ubiquitous mechanism by which signals are transduced in cells. Protein kinases, enzymes that catalyze the phosphotransfer reaction are, themselves, often regulated by phosphorylation. Paradoxically, however, a substantial fraction of more than 500 human protein kinases are capable of catalyzing their own activation loop phosphorylation. Commonly, these kinases perform this autophosphorylation reaction in trans, whereby transient dimerization leads to the mutual phosphorylation of the activation loop of the opposing protomer. In this study, we demonstrate that protein kinase D (PKD) is regulated by the inverse mechanism of dimerization-mediated trans-autoinhibition, followed by activation loop autophosphorylation in cis. We show that PKD forms a stable face-to-face homodimer that is incapable of either autophosphorylation or substrate phosphorylation. Dissociation of this trans-autoinhibited dimer results in activation loop autophosphorylation, which occurs exclusively in cis. Phosphorylation serves to increase PKD activity and prevent trans-autoinhibition, thereby switching PKD on. Our findings not only reveal the mechanism of PKD regulation but also have profound implications for the regulation of many other eukaryotic kinases. National Academy of Sciences 2023-02-06 2023-02-14 /pmc/articles/PMC9962925/ /pubmed/36745811 http://dx.doi.org/10.1073/pnas.2212909120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Reinhardt, Ronja Hirzel, Kai Link, Gisela Eisler, Stephan A. Hägele, Tanja Parson, Matthew A. H. Burke, John E. Hausser, Angelika Leonard, Thomas A. PKD autoinhibition in trans regulates activation loop autophosphorylation in cis |
title | PKD autoinhibition in trans regulates activation loop autophosphorylation in cis |
title_full | PKD autoinhibition in trans regulates activation loop autophosphorylation in cis |
title_fullStr | PKD autoinhibition in trans regulates activation loop autophosphorylation in cis |
title_full_unstemmed | PKD autoinhibition in trans regulates activation loop autophosphorylation in cis |
title_short | PKD autoinhibition in trans regulates activation loop autophosphorylation in cis |
title_sort | pkd autoinhibition in trans regulates activation loop autophosphorylation in cis |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9962925/ https://www.ncbi.nlm.nih.gov/pubmed/36745811 http://dx.doi.org/10.1073/pnas.2212909120 |
work_keys_str_mv | AT reinhardtronja pkdautoinhibitionintransregulatesactivationloopautophosphorylationincis AT hirzelkai pkdautoinhibitionintransregulatesactivationloopautophosphorylationincis AT linkgisela pkdautoinhibitionintransregulatesactivationloopautophosphorylationincis AT eislerstephana pkdautoinhibitionintransregulatesactivationloopautophosphorylationincis AT hageletanja pkdautoinhibitionintransregulatesactivationloopautophosphorylationincis AT parsonmatthewah pkdautoinhibitionintransregulatesactivationloopautophosphorylationincis AT burkejohne pkdautoinhibitionintransregulatesactivationloopautophosphorylationincis AT hausserangelika pkdautoinhibitionintransregulatesactivationloopautophosphorylationincis AT leonardthomasa pkdautoinhibitionintransregulatesactivationloopautophosphorylationincis |