Cargando…
Design and Fabrication of a MEMS Bandpass Filter with Different Center Frequency of 8.5–12 GHz
The design simulation and fabrication results of a bandpass filter based on micro-electro-mechanical system (MEMS) switches are presented in this paper. The MEMS filter element consists of a MEMS capacitance switch and two resonant rings that are fixed onto coplanar waveguide lines through anchor po...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963421/ https://www.ncbi.nlm.nih.gov/pubmed/36837981 http://dx.doi.org/10.3390/mi14020280 |
_version_ | 1784896249553485824 |
---|---|
author | Zhang, Yi-Fei Cui, Min Wu, Dong-Ping |
author_facet | Zhang, Yi-Fei Cui, Min Wu, Dong-Ping |
author_sort | Zhang, Yi-Fei |
collection | PubMed |
description | The design simulation and fabrication results of a bandpass filter based on micro-electro-mechanical system (MEMS) switches are presented in this paper. The MEMS filter element consists of a MEMS capacitance switch and two resonant rings that are fixed onto coplanar waveguide lines through anchor points. The micromachine characteristics of the filter could be optimized to change the center frequency from 8.5 to 12 GHz by improving the geometrical parameters; other electrical parameters of the filter, such as stopband rejection, insertion loss, and return loss at each center frequency, were simulated and calculated. In order to evaluate the MEMS filter design methodology, a filter working at 10.5 GHz fabricated with an aluminum top electrode was used, and it displayed a low insertion loss of 1.12 dB and a high stopband rejection of 28.3 dB. Compared with the simulation results, these proposed filter showed better electrical performance. Our results demonstrated that the filter with the integrated RF MEMS switch not only provides the benefit of reduced size compared with a traditional filter, but also improves stopband rejection, insertion loss, and return loss. |
format | Online Article Text |
id | pubmed-9963421 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99634212023-02-26 Design and Fabrication of a MEMS Bandpass Filter with Different Center Frequency of 8.5–12 GHz Zhang, Yi-Fei Cui, Min Wu, Dong-Ping Micromachines (Basel) Article The design simulation and fabrication results of a bandpass filter based on micro-electro-mechanical system (MEMS) switches are presented in this paper. The MEMS filter element consists of a MEMS capacitance switch and two resonant rings that are fixed onto coplanar waveguide lines through anchor points. The micromachine characteristics of the filter could be optimized to change the center frequency from 8.5 to 12 GHz by improving the geometrical parameters; other electrical parameters of the filter, such as stopband rejection, insertion loss, and return loss at each center frequency, were simulated and calculated. In order to evaluate the MEMS filter design methodology, a filter working at 10.5 GHz fabricated with an aluminum top electrode was used, and it displayed a low insertion loss of 1.12 dB and a high stopband rejection of 28.3 dB. Compared with the simulation results, these proposed filter showed better electrical performance. Our results demonstrated that the filter with the integrated RF MEMS switch not only provides the benefit of reduced size compared with a traditional filter, but also improves stopband rejection, insertion loss, and return loss. MDPI 2023-01-21 /pmc/articles/PMC9963421/ /pubmed/36837981 http://dx.doi.org/10.3390/mi14020280 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Yi-Fei Cui, Min Wu, Dong-Ping Design and Fabrication of a MEMS Bandpass Filter with Different Center Frequency of 8.5–12 GHz |
title | Design and Fabrication of a MEMS Bandpass Filter with Different Center Frequency of 8.5–12 GHz |
title_full | Design and Fabrication of a MEMS Bandpass Filter with Different Center Frequency of 8.5–12 GHz |
title_fullStr | Design and Fabrication of a MEMS Bandpass Filter with Different Center Frequency of 8.5–12 GHz |
title_full_unstemmed | Design and Fabrication of a MEMS Bandpass Filter with Different Center Frequency of 8.5–12 GHz |
title_short | Design and Fabrication of a MEMS Bandpass Filter with Different Center Frequency of 8.5–12 GHz |
title_sort | design and fabrication of a mems bandpass filter with different center frequency of 8.5–12 ghz |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963421/ https://www.ncbi.nlm.nih.gov/pubmed/36837981 http://dx.doi.org/10.3390/mi14020280 |
work_keys_str_mv | AT zhangyifei designandfabricationofamemsbandpassfilterwithdifferentcenterfrequencyof8512ghz AT cuimin designandfabricationofamemsbandpassfilterwithdifferentcenterfrequencyof8512ghz AT wudongping designandfabricationofamemsbandpassfilterwithdifferentcenterfrequencyof8512ghz |