Cargando…
Low Trapping Effects and High Electron Confinement in Short AlN/GaN-On-SiC HEMTs by Means of a Thin AlGaN Back Barrier
In this paper, we report on an enhancement of mm-wave power performances with a vertically scaled AlN/GaN heterostructure. An AlGaN back barrier is introduced underneath a non-intentionally doped GaN channel layer, enabling the prevention of punch-through effects and related drain leakage current un...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964327/ https://www.ncbi.nlm.nih.gov/pubmed/36837991 http://dx.doi.org/10.3390/mi14020291 |
Sumario: | In this paper, we report on an enhancement of mm-wave power performances with a vertically scaled AlN/GaN heterostructure. An AlGaN back barrier is introduced underneath a non-intentionally doped GaN channel layer, enabling the prevention of punch-through effects and related drain leakage current under a high electric field while using a moderate carbon concentration into the buffer. By carefully tuning the Al concentration into the back barrier layer, the optimized heterostructure offers a unique combination of electron confinement and low trapping effects up to high drain bias for a gate length as short as 100 nm. Consequently, pulsed (CW) Load-Pull measurements at 40 GHz revealed outstanding performances with a record power-added efficiency of 70% (66%) under high output power density at V(DS) = 20 V. These results demonstrate the interest of this approach for future millimeter-wave applications. |
---|