Cargando…

Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii)

Food-derived bioactive peptides (BAPs) obtained from edible insect-protein hold multiple activities promising the potential to target complex pathological mechanisms responsible for chronic health conditions such as hypertension development. In this study, enzymatic protein hydrolysates from non-mul...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarkar, Preeti, Pecorelli, Alessandra, Woodby, Brittany, Pambianchi, Erika, Ferrara, Francesca, Duary, Raj Kumar, Valacchi, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964498/
https://www.ncbi.nlm.nih.gov/pubmed/36839393
http://dx.doi.org/10.3390/nu15041035
_version_ 1784896521011986432
author Sarkar, Preeti
Pecorelli, Alessandra
Woodby, Brittany
Pambianchi, Erika
Ferrara, Francesca
Duary, Raj Kumar
Valacchi, Giuseppe
author_facet Sarkar, Preeti
Pecorelli, Alessandra
Woodby, Brittany
Pambianchi, Erika
Ferrara, Francesca
Duary, Raj Kumar
Valacchi, Giuseppe
author_sort Sarkar, Preeti
collection PubMed
description Food-derived bioactive peptides (BAPs) obtained from edible insect-protein hold multiple activities promising the potential to target complex pathological mechanisms responsible for chronic health conditions such as hypertension development. In this study, enzymatic protein hydrolysates from non-mulberry edible silkworm Antheraea assama (Muga) and Philosomia ricini (Eri) pupae, specifically Alcalase (A. assama) and Papain (P. ricini) hydrolysates obtained after 60 and 240 min, exhibited the highest ACE-inhibitory and antioxidant properties. The hydrolysates’ fractions (<3, 3–10 and >10 kDa), specifically Alc_M60min_F3 (≤3 kDa) and Pap_E240min_F3 (≤3 kDa), showed the highest antioxidant and ACE-inhibitory activities, respectively. Further RP-HPLC purified sub-fractions F4 and F6 showed the highest ACE inhibition as well as potent anti-oxinflammatory activities in lipopolysaccharide (LPS)-treated endothelial cells. Indeed, F4 and F6 ACE-inhibitory peptide fractions were effective in preventing p65 nuclear translocation after 3 h of LPS stimulation along with the inhibition of p38 MAPK phosphorylation in HUVEC cells. In addition, pretreatment with F4 and F6 ACE-inhibitory peptide fractions significantly prevented the LPS-induced upregulation of COX-2 expression and IL-1β secretion, while the expression of NRF2 (nuclear factor erythroid 2-related factor 2)-regulated enzymes such as HO-1 and NQO1 was induced by both peptide fractions. The derived peptides from edible pupae protein hydrolysates have potentialities to be explored as nutritional approaches against hypertension and related cardiovascular diseases.
format Online
Article
Text
id pubmed-9964498
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99644982023-02-26 Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii) Sarkar, Preeti Pecorelli, Alessandra Woodby, Brittany Pambianchi, Erika Ferrara, Francesca Duary, Raj Kumar Valacchi, Giuseppe Nutrients Article Food-derived bioactive peptides (BAPs) obtained from edible insect-protein hold multiple activities promising the potential to target complex pathological mechanisms responsible for chronic health conditions such as hypertension development. In this study, enzymatic protein hydrolysates from non-mulberry edible silkworm Antheraea assama (Muga) and Philosomia ricini (Eri) pupae, specifically Alcalase (A. assama) and Papain (P. ricini) hydrolysates obtained after 60 and 240 min, exhibited the highest ACE-inhibitory and antioxidant properties. The hydrolysates’ fractions (<3, 3–10 and >10 kDa), specifically Alc_M60min_F3 (≤3 kDa) and Pap_E240min_F3 (≤3 kDa), showed the highest antioxidant and ACE-inhibitory activities, respectively. Further RP-HPLC purified sub-fractions F4 and F6 showed the highest ACE inhibition as well as potent anti-oxinflammatory activities in lipopolysaccharide (LPS)-treated endothelial cells. Indeed, F4 and F6 ACE-inhibitory peptide fractions were effective in preventing p65 nuclear translocation after 3 h of LPS stimulation along with the inhibition of p38 MAPK phosphorylation in HUVEC cells. In addition, pretreatment with F4 and F6 ACE-inhibitory peptide fractions significantly prevented the LPS-induced upregulation of COX-2 expression and IL-1β secretion, while the expression of NRF2 (nuclear factor erythroid 2-related factor 2)-regulated enzymes such as HO-1 and NQO1 was induced by both peptide fractions. The derived peptides from edible pupae protein hydrolysates have potentialities to be explored as nutritional approaches against hypertension and related cardiovascular diseases. MDPI 2023-02-19 /pmc/articles/PMC9964498/ /pubmed/36839393 http://dx.doi.org/10.3390/nu15041035 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sarkar, Preeti
Pecorelli, Alessandra
Woodby, Brittany
Pambianchi, Erika
Ferrara, Francesca
Duary, Raj Kumar
Valacchi, Giuseppe
Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii)
title Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii)
title_full Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii)
title_fullStr Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii)
title_full_unstemmed Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii)
title_short Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii)
title_sort evaluation of anti-oxinflammatory and ace-inhibitory properties of protein hydrolysates obtained from edible non-mulberry silkworm pupae (antheraea assama and philosomia ricinii)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964498/
https://www.ncbi.nlm.nih.gov/pubmed/36839393
http://dx.doi.org/10.3390/nu15041035
work_keys_str_mv AT sarkarpreeti evaluationofantioxinflammatoryandaceinhibitorypropertiesofproteinhydrolysatesobtainedfromediblenonmulberrysilkwormpupaeantheraeaassamaandphilosomiaricinii
AT pecorellialessandra evaluationofantioxinflammatoryandaceinhibitorypropertiesofproteinhydrolysatesobtainedfromediblenonmulberrysilkwormpupaeantheraeaassamaandphilosomiaricinii
AT woodbybrittany evaluationofantioxinflammatoryandaceinhibitorypropertiesofproteinhydrolysatesobtainedfromediblenonmulberrysilkwormpupaeantheraeaassamaandphilosomiaricinii
AT pambianchierika evaluationofantioxinflammatoryandaceinhibitorypropertiesofproteinhydrolysatesobtainedfromediblenonmulberrysilkwormpupaeantheraeaassamaandphilosomiaricinii
AT ferrarafrancesca evaluationofantioxinflammatoryandaceinhibitorypropertiesofproteinhydrolysatesobtainedfromediblenonmulberrysilkwormpupaeantheraeaassamaandphilosomiaricinii
AT duaryrajkumar evaluationofantioxinflammatoryandaceinhibitorypropertiesofproteinhydrolysatesobtainedfromediblenonmulberrysilkwormpupaeantheraeaassamaandphilosomiaricinii
AT valacchigiuseppe evaluationofantioxinflammatoryandaceinhibitorypropertiesofproteinhydrolysatesobtainedfromediblenonmulberrysilkwormpupaeantheraeaassamaandphilosomiaricinii