Cargando…

A Rapid and Sensitive UHPLC–MS/MS Method for Determination of Chlorogenic Acid and Its Application to Distribution and Neuroprotection in Rat Brain

Chlorogenic acid (5-CQA) is a phenolic natural product that has been reported to improve neurobehavioral disorders and brain injury. However, its pharmacokinetics and distribution in the rat brain remain unclear. In this study, we established a rapid and sensitive UHPLC–MS/MS method for the determin...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Chongfei, Zhou, Xiaogang, Yu, Lu, Wu, Anguo, Yang, Le, Chen, Jianping, Tang, Xue, Zou, Wenjun, Wu, Jianming, Zhu, Linjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9964875/
https://www.ncbi.nlm.nih.gov/pubmed/37259330
http://dx.doi.org/10.3390/ph16020178
Descripción
Sumario:Chlorogenic acid (5-CQA) is a phenolic natural product that has been reported to improve neurobehavioral disorders and brain injury. However, its pharmacokinetics and distribution in the rat brain remain unclear. In this study, we established a rapid and sensitive UHPLC–MS/MS method for the determination of 5-CQA in rat plasma, cerebrospinal fluid (CSF), and brain tissue to investigate whether it could pass through the blood–brain barrier (BBB) and its distribution in the rat brain, and a Caenorhabditis elegans (C. elegans) strain paralysis assay was used to investigate the neuroprotective effect of 5-CQA in different brain tissues. Chromatographic separation of 5-CQA and glycyrrhetinic acid (GA, used as internal standard) was completed in 0.5 min, and the full run time was maintained at 4.0 min. Methodological validation results presented a high accuracy (95.69–106.81%) and precision (RSD ≤ 8%), with a lower limit of quantification of 1.0 ng/mL. Pharmacokinetic results revealed that 5-CQA can pass through the BBB into the CSF, but the permeability of BBB to 5-CQA (ratio of mean AUC(0-∞) of CSF to plasma) was only approximately 0.29%. In addition, 5-CQA can penetrate into the rat brain extensively and is distributed with different intensities in different nuclei. A C. elegans strain paralysis assay indicated that the neuroprotective effect of 5-CQA is positively correlated with its content in different brain tissues. In conclusion, our study for the first time explored the BBB pass rate and brain tissue distribution of 5-CQA administered via the tail vein by the UHPLC–MS/MS method and investigated the potential main target area of 5-CQA for neuroprotection, which could provide a certain basis for the treatment of nervous system-related diseases of 5-CQA.