Cargando…
Solute Carrier Family 29A1 Mediates In Vitro Resistance to Azacitidine in Acute Myeloid Leukemia Cell Lines
Azacitidine (AZA) is commonly used hypomethylating agent for higher risk myelodysplastic syndromes and acute myeloid leukemia (AML). Although some patients achieve remission, eventually most patients fail AZA therapy. Comprehensive analysis of intracellular uptake and retention (IUR) of carbon-label...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965596/ https://www.ncbi.nlm.nih.gov/pubmed/36834962 http://dx.doi.org/10.3390/ijms24043553 |
Sumario: | Azacitidine (AZA) is commonly used hypomethylating agent for higher risk myelodysplastic syndromes and acute myeloid leukemia (AML). Although some patients achieve remission, eventually most patients fail AZA therapy. Comprehensive analysis of intracellular uptake and retention (IUR) of carbon-labeled AZA ((14)C-AZA), gene expression, transporter pump activity with or without inhibitors, and cytotoxicity in naïve and resistant cell lines provided insight into the mechanism of AZA resistance. AML cell lines were exposed to increasing concentrations of AZA to create resistant clones. (14)C-AZA IUR was significantly lower in MOLM-13- (1.65 ± 0.08 ng vs. 5.79 ± 0.18 ng; p < 0.0001) and SKM-1- (1.10 ± 0.08 vs. 5.08 ± 0.26 ng; p < 0.0001) resistant cells compared to respective parental cells. Importantly, (14)C-AZA IUR progressively reduced with downregulation of SLC29A1 expression in MOLM-13- and SKM-1-resistant cells. Furthermore, nitrobenzyl mercaptopurine riboside, an SLC29A inhibitor, reduced (14)C-AZA IUR in MOLM-13 (5.79 ± 0.18 vs. 2.07 ± 0.23, p < 0.0001) and SKM-1-naive cells (5.08 ± 2.59 vs. 1.39 ± 0.19, p = 0.0002) and reduced efficacy of AZA. As the expression of cellular efflux pumps such as ABCB1 and ABCG2 did not change in AZA-resistant cells, they are unlikely contribute to AZA resistance. Therefore, the current study provides a causal link between in vitro AZA resistance and downregulation of cellular influx transporter SLC29A1. |
---|