Cargando…
Reducing the Energy Consumption of sEMG-Based Gesture Recognition at the Edge Using Transformers and Dynamic Inference
Hand gesture recognition applications based on surface electromiographic (sEMG) signals can benefit from on-device execution to achieve faster and more predictable response times and higher energy efficiency. However, deploying state-of-the-art deep learning (DL) models for this task on memory-const...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965939/ https://www.ncbi.nlm.nih.gov/pubmed/36850662 http://dx.doi.org/10.3390/s23042065 |