Cargando…

An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5

SIMPLE SUMMARY: For reliable detection of canine parainfluenza virus 5, a duplex real-time quantitative RT-PCR assay using the viral L gene and canine 16S rRNA primers and probe sets was developed in this study. The assay has high analytical sensitivity, specificity, and accuracy. Clinical evaluatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeon, Gyu-Tae, Kim, Hye-Ryung, Shin, Yeun-Kyung, Kwon, Oh-Kyu, Kang, Hae-Eun, Kwon, Oh-Deog, Park, Choi-Kyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965950/
https://www.ncbi.nlm.nih.gov/pubmed/36851445
http://dx.doi.org/10.3390/vetsci10020142
_version_ 1784896894333353984
author Jeon, Gyu-Tae
Kim, Hye-Ryung
Shin, Yeun-Kyung
Kwon, Oh-Kyu
Kang, Hae-Eun
Kwon, Oh-Deog
Park, Choi-Kyu
author_facet Jeon, Gyu-Tae
Kim, Hye-Ryung
Shin, Yeun-Kyung
Kwon, Oh-Kyu
Kang, Hae-Eun
Kwon, Oh-Deog
Park, Choi-Kyu
author_sort Jeon, Gyu-Tae
collection PubMed
description SIMPLE SUMMARY: For reliable detection of canine parainfluenza virus 5, a duplex real-time quantitative RT-PCR assay using the viral L gene and canine 16S rRNA primers and probe sets was developed in this study. The assay has high analytical sensitivity, specificity, and accuracy. Clinical evaluation results showed that diagnostic sensitivity of the assay was higher than that of the previous HN gene-specific assay and comparable to that of the previous N gene-specific assay. Furthermore, canine 16S rRNA was stably amplified by the assay in clinical samples, allowing for the avoidance of false negative results. These results suggested that the L gene-specific assay will be a promising tool for the rapid diagnosis and control of canine parainfluenza virus 5 in dogs. ABSTRACT: A duplex real-time quantitative reverse transcription-polymerase chain reaction (dqRT-PCR) assay was successfully developed to simultaneously detect canine parainfluenza virus 5 (CPIV5) and a canine endogenous internal positive control (EIPC) in canine clinical samples. Two sets of primers and probes for the CPIV5 L and canine 16S rRNA genes were included in the dqRT-PCR assay to detect CPIV and monitor invalid results throughout the qRT-PCR process. The developed dqRT-PCR assay specifically detected CPIV5 but no other canine pathogens. Furthermore, 16S rRNA was stably amplified by dqRT-PCR assay in all samples containing canine cellular materials. The assay’s sensitivity was determined as below ten RNA copies per reaction, with CPIV5 L gene standard RNA and 1 TCID(50)/mL with the CPIV5 D008 vaccine strain, which was 10-fold higher than that of the previous HN gene-specific qRT-PCR (HN-qRT-PCR) assays and was equivalent to that of the previous N gene-specific qRT-PCR (N-qRT-PCR) assays, respectively. Moreover, the Ct values of the CPIV5-positive samples obtained using the dqRT-PCR assay were lower than those obtained using the previous HN- and N-qRT-PCR assays, indicating that the diagnostic performance of the dqRT-PCR assay was superior to those of previous HN- and N-qRT-PCR assays. The calculated Cohen’s kappa coefficient values (95% confidence interval) between dqRT-PCR and the HN- or N-specific qRT-PCR assays were 0.97 (0.90–1.03) or 1.00 (1.00–1.00), respectively. In conclusion, the newly developed dqRT-PCR assay with high sensitivity, specificity, and reliability will be a promising diagnostic tool for the detection of CPIV5 in clinical samples and useful for etiological and epidemiological studies of CPIV5 infection in dogs.
format Online
Article
Text
id pubmed-9965950
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99659502023-02-26 An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5 Jeon, Gyu-Tae Kim, Hye-Ryung Shin, Yeun-Kyung Kwon, Oh-Kyu Kang, Hae-Eun Kwon, Oh-Deog Park, Choi-Kyu Vet Sci Article SIMPLE SUMMARY: For reliable detection of canine parainfluenza virus 5, a duplex real-time quantitative RT-PCR assay using the viral L gene and canine 16S rRNA primers and probe sets was developed in this study. The assay has high analytical sensitivity, specificity, and accuracy. Clinical evaluation results showed that diagnostic sensitivity of the assay was higher than that of the previous HN gene-specific assay and comparable to that of the previous N gene-specific assay. Furthermore, canine 16S rRNA was stably amplified by the assay in clinical samples, allowing for the avoidance of false negative results. These results suggested that the L gene-specific assay will be a promising tool for the rapid diagnosis and control of canine parainfluenza virus 5 in dogs. ABSTRACT: A duplex real-time quantitative reverse transcription-polymerase chain reaction (dqRT-PCR) assay was successfully developed to simultaneously detect canine parainfluenza virus 5 (CPIV5) and a canine endogenous internal positive control (EIPC) in canine clinical samples. Two sets of primers and probes for the CPIV5 L and canine 16S rRNA genes were included in the dqRT-PCR assay to detect CPIV and monitor invalid results throughout the qRT-PCR process. The developed dqRT-PCR assay specifically detected CPIV5 but no other canine pathogens. Furthermore, 16S rRNA was stably amplified by dqRT-PCR assay in all samples containing canine cellular materials. The assay’s sensitivity was determined as below ten RNA copies per reaction, with CPIV5 L gene standard RNA and 1 TCID(50)/mL with the CPIV5 D008 vaccine strain, which was 10-fold higher than that of the previous HN gene-specific qRT-PCR (HN-qRT-PCR) assays and was equivalent to that of the previous N gene-specific qRT-PCR (N-qRT-PCR) assays, respectively. Moreover, the Ct values of the CPIV5-positive samples obtained using the dqRT-PCR assay were lower than those obtained using the previous HN- and N-qRT-PCR assays, indicating that the diagnostic performance of the dqRT-PCR assay was superior to those of previous HN- and N-qRT-PCR assays. The calculated Cohen’s kappa coefficient values (95% confidence interval) between dqRT-PCR and the HN- or N-specific qRT-PCR assays were 0.97 (0.90–1.03) or 1.00 (1.00–1.00), respectively. In conclusion, the newly developed dqRT-PCR assay with high sensitivity, specificity, and reliability will be a promising diagnostic tool for the detection of CPIV5 in clinical samples and useful for etiological and epidemiological studies of CPIV5 infection in dogs. MDPI 2023-02-10 /pmc/articles/PMC9965950/ /pubmed/36851445 http://dx.doi.org/10.3390/vetsci10020142 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jeon, Gyu-Tae
Kim, Hye-Ryung
Shin, Yeun-Kyung
Kwon, Oh-Kyu
Kang, Hae-Eun
Kwon, Oh-Deog
Park, Choi-Kyu
An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5
title An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5
title_full An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5
title_fullStr An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5
title_full_unstemmed An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5
title_short An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5
title_sort improved duplex real-time quantitative rt-pcr assay with a canine endogenous internal positive control for more sensitive and reliable detection of canine parainfluenza virus 5
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965950/
https://www.ncbi.nlm.nih.gov/pubmed/36851445
http://dx.doi.org/10.3390/vetsci10020142
work_keys_str_mv AT jeongyutae animprovedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT kimhyeryung animprovedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT shinyeunkyung animprovedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT kwonohkyu animprovedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT kanghaeeun animprovedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT kwonohdeog animprovedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT parkchoikyu animprovedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT jeongyutae improvedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT kimhyeryung improvedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT shinyeunkyung improvedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT kwonohkyu improvedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT kanghaeeun improvedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT kwonohdeog improvedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5
AT parkchoikyu improvedduplexrealtimequantitativertpcrassaywithacanineendogenousinternalpositivecontrolformoresensitiveandreliabledetectionofcanineparainfluenzavirus5