Cargando…
Exploring the Chemical Space of CYP17A1 Inhibitors Using Cheminformatics and Machine Learning
Cytochrome P450 17A1 (CYP17A1) is one of the key enzymes in steroidogenesis that produces dehydroepiandrosterone (DHEA) from cholesterol. Abnormal DHEA production may lead to the progression of severe diseases, such as prostatic and breast cancers. Thus, CYP17A1 is a druggable target for anti-cancer...
Autores principales: | Yu, Tianshi, Huang, Tianyang, Yu, Leiye, Nantasenamat, Chanin, Anuwongcharoen, Nuttapat, Piacham, Theeraphon, Ren, Ruobing, Chiang, Ying-Chih |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9966999/ https://www.ncbi.nlm.nih.gov/pubmed/36838665 http://dx.doi.org/10.3390/molecules28041679 |
Ejemplares similares
-
Cheminformatic
Analysis and Machine Learning Modeling
to Investigate Androgen Receptor Antagonists to Combat Prostate Cancer
por: Yu, Tianshi, et al.
Publicado: (2023) -
Machine Learning
Approaches to Investigate the Structure–Activity
Relationship of Angiotensin-Converting Enzyme Inhibitors
por: Yu, Tianshi, et al.
Publicado: (2023) -
Machine learning approaches to study the structure-activity relationships of LpxC inhibitors
por: Yu, Tianshi, et al.
Publicado: (2023) -
Towards combating antibiotic resistance by exploring the quantitative structure-activity relationship of NDM-1 inhibitors
por: Yu, Tianshi, et al.
Publicado: (2022) -
Privileged substructures for anti-sickling activity via cheminformatic analysis
por: Phanus-umporn, Chuleeporn, et al.
Publicado: (2018)