Cargando…
Conduction Conditions for Self-Healing of Metal Interconnect Using Copper Microparticles Dispersed with Silicone Oil
This study clarifies the conditions for the bridging and conduction of a gap on a metal interconnect using copper microparticles dispersed with silicon oil. An AC voltage applied to a metal interconnect with a gap covered by a dispersion of metal microparticles traps the metal microparticles in the...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9967765/ https://www.ncbi.nlm.nih.gov/pubmed/36838176 http://dx.doi.org/10.3390/mi14020475 |
Sumario: | This study clarifies the conditions for the bridging and conduction of a gap on a metal interconnect using copper microparticles dispersed with silicon oil. An AC voltage applied to a metal interconnect with a gap covered by a dispersion of metal microparticles traps the metal microparticles in the gap owing to the influence of a dielectrophoretic force on the interconnect, thus forming a metal microparticle chain. The current was tuned independently of the applied voltage by changing the external resistance. An AC voltage of 32 kHz was applied to a 10 µm wide gap on a metal interconnect covered with 3 µm diameter copper microparticles dispersed with silicone oil. Consequently, the copper microparticle chains physically bridged the interconnect and exhibited electrical conductivity at an applied voltage of 14 V(rms) or higher and a post-bridging current of 350 mA(rms) or lower. It was shown that the copper microparticle chains did not exhibit electrical conductivity at low applied voltages, even if the microparticle chains bridged the gap. A voltage higher than a certain value was required to achieve electrical conductivity, whereas an excessive voltage caused bubble formation and destroyed the bridges. These phenomena were explained based on the applied voltage and reference value of the current after bridging. |
---|