Cargando…
Effective production of kojic acid in engineered Aspergillus niger
BACKGROUND: Kojic acid (KA) is a widely used compound in the cosmetic, medical, and food industries, and is typically produced by Aspergillus oryzae. To meet increasing market demand, it is important to optimize KA production through seeking alternatives that are more economic than current A. oryzae...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969635/ https://www.ncbi.nlm.nih.gov/pubmed/36843006 http://dx.doi.org/10.1186/s12934-023-02038-w |
Sumario: | BACKGROUND: Kojic acid (KA) is a widely used compound in the cosmetic, medical, and food industries, and is typically produced by Aspergillus oryzae. To meet increasing market demand, it is important to optimize KA production through seeking alternatives that are more economic than current A. oryzae-based methods. RESULTS: In this study, we achieved the first successful heterologous production of KA in Aspergillus niger, an industrially important fungus that does not naturally produce KA, through the expression of the kojA gene from A. oryzae. Using the resulting KA-producing A. niger strain as a platform, we identified four genes (nrkA, nrkB, nrkC, and nrkD) that negatively regulate KA production. Knocking down nrkA or deleting any of the other three genes resulted in a significant increase in KA production in shaking flask cultivation. The highest KA titer (25.71 g/L) was achieved in a pH controlled batch bioreactor using the kojA overexpression strain with a deletion of nrkC, which showed a 26.7% improvement compared to the KA titer (20.29 g/L) that was achieved in shaking flask cultivation. CONCLUSION: Our study demonstrates the potential of using A. niger as a platform for studying KA biosynthesis and regulation, and for the cost-effective production of KA in industrial strain development. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12934-023-02038-w. |
---|