Cargando…

Improvements in 2D p-type WSe(2) transistors towards ultimate CMOS scaling

This paper provides comprehensive experimental analysis relating to improvements in the two-dimensional (2D) p-type metal–oxide–semiconductor (PMOS) field effect transistors (FETs) by pure van der Waals (vdW) contacts on few-layer tungsten diselenide (WSe(2)) with high-k metal gate (HKMG) stacks. Ou...

Descripción completa

Detalles Bibliográficos
Autores principales: Patoary, Naim Hossain, Xie, Jing, Zhou, Guantong, Al Mamun, Fahad, Sayyad, Mohammed, Tongay, Sefaattin, Esqueda, Ivan Sanchez
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971212/
https://www.ncbi.nlm.nih.gov/pubmed/36849724
http://dx.doi.org/10.1038/s41598-023-30317-4
Descripción
Sumario:This paper provides comprehensive experimental analysis relating to improvements in the two-dimensional (2D) p-type metal–oxide–semiconductor (PMOS) field effect transistors (FETs) by pure van der Waals (vdW) contacts on few-layer tungsten diselenide (WSe(2)) with high-k metal gate (HKMG) stacks. Our analysis shows that standard metallization techniques (e.g., e-beam evaporation at moderate pressure ~ 10(–5) torr) results in significant Fermi-level pinning, but Schottky barrier heights (SBH) remain small (< 100 meV) when using high work function metals (e.g., Pt or Pd). Temperature-dependent analysis uncovers a more dominant contribution to contact resistance from the channel access region and confirms significant improvement through less damaging metallization techniques (i.e., reduced scattering) combined with strongly scaled HKMG stacks (enhanced carrier density). A clean contact/channel interface is achieved through high-vacuum evaporation and temperature-controlled stepped deposition providing large improvements in contact resistance. Our study reports low contact resistance of 5.7 kΩ-µm, with on-state currents of ~ 97 µA/µm and subthreshold swing of ~ 140 mV/dec in FETs with channel lengths of 400 nm. Furthermore, theoretical analysis using a Landauer transport ballistic model for WSe(2) SB-FETs elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance (excellent on-state current vs subthreshold swing benchmarks) towards the ultimate CMOS scaling limit.