Cargando…

Intertumoral Differences Dictate the Outcome of TGF-β Blockade on the Efficacy of Viro-Immunotherapy

The absence of T cells in the tumor microenvironment of solid tumors is a major barrier to cancer immunotherapy efficacy. Oncolytic viruses, including reovirus type 3 Dearing (Reo), can recruit CD8(+) T cells to the tumor and thereby enhance the efficacy of immunotherapeutic strategies that depend o...

Descripción completa

Detalles Bibliográficos
Autores principales: Groeneveldt, Christianne, van Ginkel, Jurriaan Q., Kinderman, Priscilla, Sluijter, Marjolein, Griffioen, Lisa, Labrie, Camilla, van den Wollenberg, Diana J.M., Hoeben, Rob C., van der Burg, Sjoerd H., ten Dijke, Peter, Hawinkels, Lukas J.A.C., van Hall, Thorbald, van Montfoort, Nadine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for Cancer Research 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9973387/
https://www.ncbi.nlm.nih.gov/pubmed/36860656
http://dx.doi.org/10.1158/2767-9764.CRC-23-0019
Descripción
Sumario:The absence of T cells in the tumor microenvironment of solid tumors is a major barrier to cancer immunotherapy efficacy. Oncolytic viruses, including reovirus type 3 Dearing (Reo), can recruit CD8(+) T cells to the tumor and thereby enhance the efficacy of immunotherapeutic strategies that depend on high T-cell density, such as CD3-bispecific antibody (bsAb) therapy. TGF-β signaling might represent another barrier to effective Reo&CD3-bsAb therapy due to its immunoinhibitory characteristics. Here, we investigated the effect of TGF-β blockade on the antitumor efficacy of Reo&CD3-bsAb therapy in the preclinical pancreatic KPC3 and colon MC38 tumor models, where TGF-β signaling is active. TGF-β blockade impaired tumor growth in both KPC3 and MC38 tumors. Furthermore, TGF-β blockade did not affect reovirus replication in both models and significantly enhanced the Reo-induced T-cell influx in MC38 colon tumors. Reo administration decreased TGF-β signaling in MC38 tumors but instead increased TGF-β activity in KPC3 tumors, resulting in the accumulation of α-smooth muscle actin (αSMA(+)) fibroblasts. In KPC3 tumors, TGF-β blockade antagonized the antitumor effect of Reo&CD3-bsAb therapy, even though T-cell influx and activity were not impaired. Moreover, genetic loss of TGF-β signaling in CD8(+) T cells had no effect on therapeutic responses. In contrast, TGF-β blockade significantly improved therapeutic efficacy of Reo&CD3-bsAb in mice bearing MC38 colon tumors, resulting in a 100% complete response. Further understanding of the factors that determine this intertumor dichotomy is required before TGF-β inhibition can be exploited as part of viroimmunotherapeutic combination strategies to improve their clinical benefit. SIGNIFICANCE: Blockade of the pleiotropic molecule TGF-β can both improve and impair the efficacy of viro-immunotherapy, depending on the tumor model. While TGF-β blockade antagonized Reo&CD3-bsAb combination therapy in the KPC3 model for pancreatic cancer, it resulted in 100% complete responses in the MC38 colon model. Understanding factors underlying this contrast is required to guide therapeutic application.