Cargando…
A clustering linear combination method for multiple phenotype association studies based on GWAS summary statistics
There is strong evidence showing that joint analysis of multiple phenotypes in genome-wide association studies (GWAS) can increase statistical power when detecting the association between genetic variants and human complex diseases. We previously developed the Clustering Linear Combination (CLC) met...
Autores principales: | Wang, Meida, Cao, Xuewei, Zhang, Shuanglin, Sha, Qiuying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975197/ https://www.ncbi.nlm.nih.gov/pubmed/36854754 http://dx.doi.org/10.1038/s41598-023-30415-3 |
Ejemplares similares
-
A computationally efficient clustering linear combination approach to jointly analyze multiple phenotypes for GWAS
por: Wang, Meida, et al.
Publicado: (2022) -
Gene-based association tests using GWAS summary statistics and incorporating eQTL
por: Cao, Xuewei, et al.
Publicado: (2022) -
HCLC-FC: A novel statistical method for phenome-wide association studies
por: Liang, Xiaoyu, et al.
Publicado: (2022) -
Joint analysis of multiple phenotypes for extremely unbalanced case–control association studies using multi-layer network
por: Xie, Hongjing, et al.
Publicado: (2023) -
An Adaptive Fisher’s Combination Method for Joint Analysis of Multiple Phenotypes in Association Studies
por: Liang, Xiaoyu, et al.
Publicado: (2016)