Cargando…

A somatic hypermutation–based machine learning model stratifies individuals with Crohn's disease and controls

Crohn's disease (CD) is a chronic relapsing–remitting inflammatory disorder of the gastrointestinal tract that is characterized by altered innate and adaptive immune function. Although massively parallel sequencing studies of the T cell receptor repertoire identified oligoclonal expansion of un...

Descripción completa

Detalles Bibliográficos
Autores principales: Safra, Modi, Werner, Lael, Peres, Ayelet, Polak, Pazit, Salamon, Naomi, Schvimer, Michael, Weiss, Batia, Barshack, Iris, Shouval, Dror S., Yaari, Gur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977146/
https://www.ncbi.nlm.nih.gov/pubmed/36526432
http://dx.doi.org/10.1101/gr.276683.122
_version_ 1784899231342919680
author Safra, Modi
Werner, Lael
Peres, Ayelet
Polak, Pazit
Salamon, Naomi
Schvimer, Michael
Weiss, Batia
Barshack, Iris
Shouval, Dror S.
Yaari, Gur
author_facet Safra, Modi
Werner, Lael
Peres, Ayelet
Polak, Pazit
Salamon, Naomi
Schvimer, Michael
Weiss, Batia
Barshack, Iris
Shouval, Dror S.
Yaari, Gur
author_sort Safra, Modi
collection PubMed
description Crohn's disease (CD) is a chronic relapsing–remitting inflammatory disorder of the gastrointestinal tract that is characterized by altered innate and adaptive immune function. Although massively parallel sequencing studies of the T cell receptor repertoire identified oligoclonal expansion of unique clones, much less is known about the B cell receptor (BCR) repertoire in CD. Here, we present a novel BCR repertoire sequencing data set from ileal biopsies from pediatric patients with CD and controls, and identify CD-specific somatic hypermutation (SHM) patterns, revealed by a machine learning (ML) algorithm trained on BCR repertoire sequences. Moreover, ML classification of a different data set from blood samples of adults with CD versus controls identified that V gene usage, clusters, or mutation frequencies yielded excellent results in classifying the disease (F1 > 90%). In summary, we show that an ML algorithm enables the classification of CD based on unique BCR repertoire features with high accuracy.
format Online
Article
Text
id pubmed-9977146
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory Press
record_format MEDLINE/PubMed
spelling pubmed-99771462023-03-02 A somatic hypermutation–based machine learning model stratifies individuals with Crohn's disease and controls Safra, Modi Werner, Lael Peres, Ayelet Polak, Pazit Salamon, Naomi Schvimer, Michael Weiss, Batia Barshack, Iris Shouval, Dror S. Yaari, Gur Genome Res Method Crohn's disease (CD) is a chronic relapsing–remitting inflammatory disorder of the gastrointestinal tract that is characterized by altered innate and adaptive immune function. Although massively parallel sequencing studies of the T cell receptor repertoire identified oligoclonal expansion of unique clones, much less is known about the B cell receptor (BCR) repertoire in CD. Here, we present a novel BCR repertoire sequencing data set from ileal biopsies from pediatric patients with CD and controls, and identify CD-specific somatic hypermutation (SHM) patterns, revealed by a machine learning (ML) algorithm trained on BCR repertoire sequences. Moreover, ML classification of a different data set from blood samples of adults with CD versus controls identified that V gene usage, clusters, or mutation frequencies yielded excellent results in classifying the disease (F1 > 90%). In summary, we show that an ML algorithm enables the classification of CD based on unique BCR repertoire features with high accuracy. Cold Spring Harbor Laboratory Press 2023-01 /pmc/articles/PMC9977146/ /pubmed/36526432 http://dx.doi.org/10.1101/gr.276683.122 Text en © 2023 Safra et al.; Published by Cold Spring Harbor Laboratory Press https://creativecommons.org/licenses/by/4.0/This article, published in Genome Research, is available under a Creative Commons License (Attribution 4.0 International), as described at http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Method
Safra, Modi
Werner, Lael
Peres, Ayelet
Polak, Pazit
Salamon, Naomi
Schvimer, Michael
Weiss, Batia
Barshack, Iris
Shouval, Dror S.
Yaari, Gur
A somatic hypermutation–based machine learning model stratifies individuals with Crohn's disease and controls
title A somatic hypermutation–based machine learning model stratifies individuals with Crohn's disease and controls
title_full A somatic hypermutation–based machine learning model stratifies individuals with Crohn's disease and controls
title_fullStr A somatic hypermutation–based machine learning model stratifies individuals with Crohn's disease and controls
title_full_unstemmed A somatic hypermutation–based machine learning model stratifies individuals with Crohn's disease and controls
title_short A somatic hypermutation–based machine learning model stratifies individuals with Crohn's disease and controls
title_sort somatic hypermutation–based machine learning model stratifies individuals with crohn's disease and controls
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977146/
https://www.ncbi.nlm.nih.gov/pubmed/36526432
http://dx.doi.org/10.1101/gr.276683.122
work_keys_str_mv AT saframodi asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT wernerlael asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT peresayelet asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT polakpazit asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT salamonnaomi asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT schvimermichael asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT weissbatia asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT barshackiris asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT shouvaldrors asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT yaarigur asomatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT saframodi somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT wernerlael somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT peresayelet somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT polakpazit somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT salamonnaomi somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT schvimermichael somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT weissbatia somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT barshackiris somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT shouvaldrors somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols
AT yaarigur somatichypermutationbasedmachinelearningmodelstratifiesindividualswithcrohnsdiseaseandcontrols