Cargando…
DNA G-quadruplex-stabilizing metal complexes as anticancer drugs
Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981530/ https://www.ncbi.nlm.nih.gov/pubmed/36456886 http://dx.doi.org/10.1007/s00775-022-01973-0 |
_version_ | 1784900124047048704 |
---|---|
author | Zegers, Jaccoline Peters, Maartje Albada, Bauke |
author_facet | Zegers, Jaccoline Peters, Maartje Albada, Bauke |
author_sort | Zegers, Jaccoline |
collection | PubMed |
description | Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field. GRAPHICAL ABSTRACT: [Image: see text] |
format | Online Article Text |
id | pubmed-9981530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-99815302023-03-04 DNA G-quadruplex-stabilizing metal complexes as anticancer drugs Zegers, Jaccoline Peters, Maartje Albada, Bauke J Biol Inorg Chem Minireview Guanine quadruplexes (G4s) are important targets for cancer treatments as their stabilization has been associated with a reduction of telomere ends or a lower oncogene expression. Although less abundant than purely organic ligands, metal complexes have shown remarkable abilities to stabilize G4s, and a wide variety of techniques have been used to characterize the interaction between ligands and G4s. However, improper alignment between the large variety of experimental techniques and biological activities can lead to improper identification of top candidates, which hampers progress of this important class of G4 stabilizers. To address this, we first review the different techniques for their strengths and weaknesses to determine the interaction of the complexes with G4s, and provide a checklist to guide future developments towards comparable data. Then, we surveyed 74 metal-based ligands for G4s that have been characterized to the in vitro level. Of these complexes, we assessed which methods were used to characterize their G4-stabilizing capacity, their selectivity for G4s over double-stranded DNA (dsDNA), and how this correlated to bioactivity data. For the biological activity data, we compared activities of the G4-stabilizing metal complexes with that of cisplatin. Lastly, we formulated guidelines for future studies on G4-stabilizing metal complexes to further enable maturation of this field. GRAPHICAL ABSTRACT: [Image: see text] Springer International Publishing 2022-12-02 2023 /pmc/articles/PMC9981530/ /pubmed/36456886 http://dx.doi.org/10.1007/s00775-022-01973-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Minireview Zegers, Jaccoline Peters, Maartje Albada, Bauke DNA G-quadruplex-stabilizing metal complexes as anticancer drugs |
title | DNA G-quadruplex-stabilizing metal complexes as anticancer drugs |
title_full | DNA G-quadruplex-stabilizing metal complexes as anticancer drugs |
title_fullStr | DNA G-quadruplex-stabilizing metal complexes as anticancer drugs |
title_full_unstemmed | DNA G-quadruplex-stabilizing metal complexes as anticancer drugs |
title_short | DNA G-quadruplex-stabilizing metal complexes as anticancer drugs |
title_sort | dna g-quadruplex-stabilizing metal complexes as anticancer drugs |
topic | Minireview |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981530/ https://www.ncbi.nlm.nih.gov/pubmed/36456886 http://dx.doi.org/10.1007/s00775-022-01973-0 |
work_keys_str_mv | AT zegersjaccoline dnagquadruplexstabilizingmetalcomplexesasanticancerdrugs AT petersmaartje dnagquadruplexstabilizingmetalcomplexesasanticancerdrugs AT albadabauke dnagquadruplexstabilizingmetalcomplexesasanticancerdrugs |