Cargando…
A neural learning approach for simultaneous object detection and grasp detection in cluttered scenes
Object detection and grasp detection are essential for unmanned systems working in cluttered real-world environments. Detecting grasp configurations for each object in the scene would enable reasoning manipulations. However, finding the relationships between objects and grasp configurations is still...
Autores principales: | Zhang, Yang, Xie, Lihua, Li, Yuheng, Li, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9986287/ https://www.ncbi.nlm.nih.gov/pubmed/36890968 http://dx.doi.org/10.3389/fncom.2023.1110889 |
Ejemplares similares
-
Visuomotor Crowding: The Resolution of Grasping in Cluttered Scenes
por: Bulakowski, Paul F., et al.
Publicado: (2009) -
Efficient push-grasping for multiple target objects in clutter environments
por: Wu, Liangdong, et al.
Publicado: (2023) -
Keypoint-Based Robotic Grasp Detection Scheme in Multi-Object Scenes
por: Li, Tong, et al.
Publicado: (2021) -
Object recognition in clutter: cortical responses depend on the type of learning
por: Hegdé, Jay, et al.
Publicado: (2012) -
Where’s Waldo? How perceptual, cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene
por: Chang, Hung-Cheng, et al.
Publicado: (2014)