Cargando…
Rh(I) Complexes with Hemilabile Thioether-Functionalized NHC Ligands as Catalysts for [2 + 2 + 2] Cycloaddition of 1,5-Bisallenes and Alkynes
[Image: see text] The [2 + 2 + 2] cycloaddition of 1,5-bisallenes and alkynes under the catalysis of Rh(I) with hemilabile thioether-functionalized N-heterocyclic carbene ligands is described. This protocol effectively provides an entry to different trans-5,6-fused bicyclic systems with two exocycli...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9990073/ https://www.ncbi.nlm.nih.gov/pubmed/36910871 http://dx.doi.org/10.1021/acscatal.2c05790 |
Sumario: | [Image: see text] The [2 + 2 + 2] cycloaddition of 1,5-bisallenes and alkynes under the catalysis of Rh(I) with hemilabile thioether-functionalized N-heterocyclic carbene ligands is described. This protocol effectively provides an entry to different trans-5,6-fused bicyclic systems with two exocyclic double bonds in the cyclohexene ring. The process is totally chemoselective with the two internal double bonds of the 1,5-bisallenes being involved in the cycloaddition. The complete mechanism of this transformation as well as the preference for the trans-fusion over the cis-fusion has been rationalized by density functional theory calculations. The reaction follows a typical [2 + 2 + 2] cycloaddition mechanism. The oxidative addition takes place between the alkyne and one of the allenes and it is when the second allene is inserted into the rhodacyclopentene that the trans-fusion is generated. Remarkably, the hemilabile character of the sulfur atom in the N-heterocyclic carbene ligand modulates the electron density in key intermediates, facilitating the overall transformation. |
---|