Cargando…

Peptide-binding specificity prediction using fine-tuned protein structure prediction networks

Peptide-binding proteins play key roles in biology, and predicting their binding specificity is a long-standing challenge. While considerable protein structural information is available, the most successful current methods use sequence information alone, in part because it has been a challenge to mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Motmaen, Amir, Dauparas, Justas, Baek, Minkyung, Abedi, Mohamad H., Baker, David, Bradley, Philip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992841/
https://www.ncbi.nlm.nih.gov/pubmed/36802421
http://dx.doi.org/10.1073/pnas.2216697120
Descripción
Sumario:Peptide-binding proteins play key roles in biology, and predicting their binding specificity is a long-standing challenge. While considerable protein structural information is available, the most successful current methods use sequence information alone, in part because it has been a challenge to model the subtle structural changes accompanying sequence substitutions. Protein structure prediction networks such as AlphaFold model sequence-structure relationships very accurately, and we reasoned that if it were possible to specifically train such networks on binding data, more generalizable models could be created. We show that placing a classifier on top of the AlphaFold network and fine-tuning the combined network parameters for both classification and structure prediction accuracy leads to a model with strong generalizable performance on a wide range of Class I and Class II peptide-MHC interactions that approaches the overall performance of the state-of-the-art NetMHCpan sequence-based method. The peptide-MHC optimized model shows excellent performance in distinguishing binding and non-binding peptides to SH3 and PDZ domains. This ability to generalize well beyond the training set far exceeds that of sequence-only models and should be particularly powerful for systems where less experimental data are available.