Cargando…

Assay development and inhibition of the Mt-DprE2 essential reductase from Mycobacterium tuberculosis

DprE2 is an essential enzyme in the synthesis of decaprenylphosphoryl-β-d-arabinofuranose (DPA) and subsequently arabinogalactan, and is a significant new drug target for M. tuberculosis . Two compounds from the GSK-177 box set, GSK301A and GSK032A, were identified through Mt-DprE2-target overexpres...

Descripción completa

Detalles Bibliográficos
Autores principales: Batt, Sarah M., Toth, Szilvi, Rodriguez, Beatriz, Abrahams, Katherine A., Veerapen, Natacha, Chiodarelli, Giacomo, Cox, Liam R., Moynihan, Patrick J., Lelievre, Joel, Fütterer, Klaus, Besra, Gurdyal S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Microbiology Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993113/
https://www.ncbi.nlm.nih.gov/pubmed/36748627
http://dx.doi.org/10.1099/mic.0.001288
Descripción
Sumario:DprE2 is an essential enzyme in the synthesis of decaprenylphosphoryl-β-d-arabinofuranose (DPA) and subsequently arabinogalactan, and is a significant new drug target for M. tuberculosis . Two compounds from the GSK-177 box set, GSK301A and GSK032A, were identified through Mt-DprE2-target overexpression studies. The Mt-DprE1-DprE2 complex was co-purified and a new in vitro DprE2 assay developed, based on the oxidation of the reduced nicotinamide adenine dinucleotide cofactor of DprE2 (NADH/NADPH). The Mt-DprE1-DprE2 complex showed interesting kinetics in both the DprE1 resazurin-based assay, where Mt-DprE2 was found to enhance Mt-DprE1 activity and reduce substrate inhibition; and also in the DprE2 assay, which similarly exhibited substrate inhibition and a difference in kinetics of the two potential cofactors, NADH and NADPH. Although, no inhibition was observed in the DprE2 assay by the two GSK set compounds, spontaneous mutant generation indicated a possible explanation in the form of a pro-drug activation pathway, involving fgd1 and fbiC.