Cargando…
Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration
Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degene...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995405/ https://www.ncbi.nlm.nih.gov/pubmed/36066634 http://dx.doi.org/10.1007/s00401-022-02487-4 |
_version_ | 1784902816221888512 |
---|---|
author | Giannini, Lucia A. A. Ohm, Daniel T. Rozemuller, Annemieke J. M. Dratch, Laynie Suh, EunRan van Deerlin, Vivianna M. Trojanowski, John Q. Lee, Edward B. van Swieten, John C. Grossman, Murray Seelaar, Harro Irwin, David J. |
author_facet | Giannini, Lucia A. A. Ohm, Daniel T. Rozemuller, Annemieke J. M. Dratch, Laynie Suh, EunRan van Deerlin, Vivianna M. Trojanowski, John Q. Lee, Edward B. van Swieten, John C. Grossman, Murray Seelaar, Harro Irwin, David J. |
author_sort | Giannini, Lucia A. A. |
collection | PubMed |
description | Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degeneration, and regional patterns of pathology in different isoform groups of FTLD-MAPT. We included 38 FTLD-MAPT autopsy cases with 10 different MAPT pathogenic variants, grouped based on predominant tau isoform(s). In up to eleven regions (ten cortical and one striatal), we quantified grey matter tau burden using digital histopathological analysis and assigned semi-quantitative ratings for neuronal degeneration (i.e. 0–4) and separate burden of glial and neuronal tau inclusions (i.e. 0–3). We used mixed modelling to compare pathology measures (1) across the entire cohort and (2) within isoform groups. In the total cohort, tau burden and neuronal degeneration were positively associated and most severe in the anterior temporal, anterior cingulate and transentorhinal cortices. Isoform groups showed distinctive features of tau burden and neuronal degeneration. Across all regions, the 3R isoform group had lower tau burden compared to the 4R group (p = 0.008), while at the same time showing more severe neuronal degeneration than the 4R group (p = 0.002). The 3R + 4R group had an intermediate profile with relatively high tau burden along with relatively severe neuronal degeneration. Neuronal tau inclusions were most frequent in the 4R group (p < 0.001 vs. 3R), while cortical glial tau inclusions were most frequent in the 3R + 4R and 4R groups (p ≤ 0.009 vs. 3R). Regionally, neuronal degeneration was consistently most severe in the anterior temporal cortex within each isoform group. In contrast, the regions with the highest tau burden differed in isoform groups (3R: striatum; 3R + 4R: striatum, inferior parietal lobule, middle frontal cortex, anterior cingulate cortex; 4R: transentorhinal cortex, anterior temporal cortex, fusiform gyrus). We conclude that FTLD-MAPT isoform groups show distinctive features of overall neuronal degeneration and regional tau burden, but all share pronounced anterior temporal neuronal degeneration. These data suggest that distinct isoform-related mechanisms of genetic tauopathies, with slightly divergent tau distribution, may share similar regional vulnerability to neurodegeneration within the frontotemporal paralimbic networks. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00401-022-02487-4. |
format | Online Article Text |
id | pubmed-9995405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-99954052023-03-10 Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration Giannini, Lucia A. A. Ohm, Daniel T. Rozemuller, Annemieke J. M. Dratch, Laynie Suh, EunRan van Deerlin, Vivianna M. Trojanowski, John Q. Lee, Edward B. van Swieten, John C. Grossman, Murray Seelaar, Harro Irwin, David J. Acta Neuropathol Original Paper Frontotemporal lobar degeneration with MAPT pathogenic variants (FTLD-MAPT) has heterogeneous tau pathological inclusions postmortem, consisting of three-repeat (3R) or four-repeat (4R) tau isoforms, or a combination (3R + 4R). Here, we studied grey matter tau burden, its relation to neuronal degeneration, and regional patterns of pathology in different isoform groups of FTLD-MAPT. We included 38 FTLD-MAPT autopsy cases with 10 different MAPT pathogenic variants, grouped based on predominant tau isoform(s). In up to eleven regions (ten cortical and one striatal), we quantified grey matter tau burden using digital histopathological analysis and assigned semi-quantitative ratings for neuronal degeneration (i.e. 0–4) and separate burden of glial and neuronal tau inclusions (i.e. 0–3). We used mixed modelling to compare pathology measures (1) across the entire cohort and (2) within isoform groups. In the total cohort, tau burden and neuronal degeneration were positively associated and most severe in the anterior temporal, anterior cingulate and transentorhinal cortices. Isoform groups showed distinctive features of tau burden and neuronal degeneration. Across all regions, the 3R isoform group had lower tau burden compared to the 4R group (p = 0.008), while at the same time showing more severe neuronal degeneration than the 4R group (p = 0.002). The 3R + 4R group had an intermediate profile with relatively high tau burden along with relatively severe neuronal degeneration. Neuronal tau inclusions were most frequent in the 4R group (p < 0.001 vs. 3R), while cortical glial tau inclusions were most frequent in the 3R + 4R and 4R groups (p ≤ 0.009 vs. 3R). Regionally, neuronal degeneration was consistently most severe in the anterior temporal cortex within each isoform group. In contrast, the regions with the highest tau burden differed in isoform groups (3R: striatum; 3R + 4R: striatum, inferior parietal lobule, middle frontal cortex, anterior cingulate cortex; 4R: transentorhinal cortex, anterior temporal cortex, fusiform gyrus). We conclude that FTLD-MAPT isoform groups show distinctive features of overall neuronal degeneration and regional tau burden, but all share pronounced anterior temporal neuronal degeneration. These data suggest that distinct isoform-related mechanisms of genetic tauopathies, with slightly divergent tau distribution, may share similar regional vulnerability to neurodegeneration within the frontotemporal paralimbic networks. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00401-022-02487-4. Springer Berlin Heidelberg 2022-09-06 2022 /pmc/articles/PMC9995405/ /pubmed/36066634 http://dx.doi.org/10.1007/s00401-022-02487-4 Text en © The Author(s) 2022, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/ Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Paper Giannini, Lucia A. A. Ohm, Daniel T. Rozemuller, Annemieke J. M. Dratch, Laynie Suh, EunRan van Deerlin, Vivianna M. Trojanowski, John Q. Lee, Edward B. van Swieten, John C. Grossman, Murray Seelaar, Harro Irwin, David J. Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration |
title | Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration |
title_full | Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration |
title_fullStr | Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration |
title_full_unstemmed | Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration |
title_short | Isoform-specific patterns of tau burden and neuronal degeneration in MAPT-associated frontotemporal lobar degeneration |
title_sort | isoform-specific patterns of tau burden and neuronal degeneration in mapt-associated frontotemporal lobar degeneration |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995405/ https://www.ncbi.nlm.nih.gov/pubmed/36066634 http://dx.doi.org/10.1007/s00401-022-02487-4 |
work_keys_str_mv | AT gianniniluciaaa isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT ohmdanielt isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT rozemullerannemiekejm isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT dratchlaynie isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT suheunran isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT vandeerlinviviannam isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT trojanowskijohnq isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT leeedwardb isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT vanswietenjohnc isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT grossmanmurray isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT seelaarharro isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT irwindavidj isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration AT isoformspecificpatternsoftauburdenandneuronaldegenerationinmaptassociatedfrontotemporallobardegeneration |