Cargando…
Fine mapping and accurate prediction of complex traits using Bayesian Variable Selection models applied to biobank-size data
Modern GWAS studies use an enormous sample size and ultra-high density SNP genotypes. These conditions reduce the mapping resolution of marginal association tests–the method most often used in GWAS. Multi-locus Bayesian Variable Selection (BVS) offers a one-stop solution for powerful and precise map...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9995454/ https://www.ncbi.nlm.nih.gov/pubmed/35853950 http://dx.doi.org/10.1038/s41431-022-01135-5 |
Sumario: | Modern GWAS studies use an enormous sample size and ultra-high density SNP genotypes. These conditions reduce the mapping resolution of marginal association tests–the method most often used in GWAS. Multi-locus Bayesian Variable Selection (BVS) offers a one-stop solution for powerful and precise mapping of risk variants and polygenic risk score (PRS) prediction. We show (with an extensive simulation) that multi-locus BVS methods can achieve high power with a low false discovery rate and a much better mapping resolution than marginal association tests. We demonstrate the performance of BVS for mapping and PRS prediction using data from blood biomarkers from the UK-Biobank (~300,000 samples and ~5.5 million SNPs). The article is accompanied by open-source R-software that implement the methods used in the study and scales to biobank-sized data. |
---|