Cargando…
Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia
Acute myeloid leukemia (AML) is challenging to treat due to its heterogeneity, prompting a deep understanding of its pathogenesis mechanisms, diagnosis, and treatment. Here, we found reduced expression and acetylation levels of WISP2 in bone marrow mononuclear cells from AML patients and that AML pa...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996369/ https://www.ncbi.nlm.nih.gov/pubmed/36736423 http://dx.doi.org/10.1016/j.jbc.2023.102971 |
_version_ | 1784903029925871616 |
---|---|
author | Zhang, Hao Song, Wenjun Ma, Xinying Yu, Mingxiao Chen, Lulu Tao, Yanling |
author_facet | Zhang, Hao Song, Wenjun Ma, Xinying Yu, Mingxiao Chen, Lulu Tao, Yanling |
author_sort | Zhang, Hao |
collection | PubMed |
description | Acute myeloid leukemia (AML) is challenging to treat due to its heterogeneity, prompting a deep understanding of its pathogenesis mechanisms, diagnosis, and treatment. Here, we found reduced expression and acetylation levels of WISP2 in bone marrow mononuclear cells from AML patients and that AML patients with lower WISP2 expression tended to have reduced survival. At the functional level, overexpression of WISP2 in leukemia cells (HL-60 and Kasumi-1) suppressed cell proliferation, induced cell apoptosis, and exerted antileukemic effects in an in vivo model of AML. Our mechanistic investigation demonstrated that WISP2 deacetylation was regulated by the deacetylase histone deacetylase (HDAC)3. In addition, we determined that crosstalk between acetylation and ubiquitination was involved in the modulation of WISP2 expression in AML. Deacetylation of WISP2 decreased the stability of the WISP2 protein by boosting its ubiquitination mediated by NEDD4 and proteasomal degradation. Moreover, pan-HDAC inhibitors (valproic acid and trichostatin A) and an HDAC3-specific inhibitor (RGFP966) induced WISP2 acetylation at lysine K6 and prevented WISP2 degradation. This regulation led to inhibition of proliferation and induction of apoptosis in AML cells. In summary, our study revealed that WISP2 contributes to tumor suppression in AML, which provided an experimental framework for WISP2 as a candidate for gene therapy of AML. |
format | Online Article Text |
id | pubmed-9996369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-99963692023-03-10 Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia Zhang, Hao Song, Wenjun Ma, Xinying Yu, Mingxiao Chen, Lulu Tao, Yanling J Biol Chem Research Article Acute myeloid leukemia (AML) is challenging to treat due to its heterogeneity, prompting a deep understanding of its pathogenesis mechanisms, diagnosis, and treatment. Here, we found reduced expression and acetylation levels of WISP2 in bone marrow mononuclear cells from AML patients and that AML patients with lower WISP2 expression tended to have reduced survival. At the functional level, overexpression of WISP2 in leukemia cells (HL-60 and Kasumi-1) suppressed cell proliferation, induced cell apoptosis, and exerted antileukemic effects in an in vivo model of AML. Our mechanistic investigation demonstrated that WISP2 deacetylation was regulated by the deacetylase histone deacetylase (HDAC)3. In addition, we determined that crosstalk between acetylation and ubiquitination was involved in the modulation of WISP2 expression in AML. Deacetylation of WISP2 decreased the stability of the WISP2 protein by boosting its ubiquitination mediated by NEDD4 and proteasomal degradation. Moreover, pan-HDAC inhibitors (valproic acid and trichostatin A) and an HDAC3-specific inhibitor (RGFP966) induced WISP2 acetylation at lysine K6 and prevented WISP2 degradation. This regulation led to inhibition of proliferation and induction of apoptosis in AML cells. In summary, our study revealed that WISP2 contributes to tumor suppression in AML, which provided an experimental framework for WISP2 as a candidate for gene therapy of AML. American Society for Biochemistry and Molecular Biology 2023-02-01 /pmc/articles/PMC9996369/ /pubmed/36736423 http://dx.doi.org/10.1016/j.jbc.2023.102971 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Zhang, Hao Song, Wenjun Ma, Xinying Yu, Mingxiao Chen, Lulu Tao, Yanling Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia |
title | Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia |
title_full | Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia |
title_fullStr | Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia |
title_full_unstemmed | Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia |
title_short | Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia |
title_sort | acetylation stabilizes the signaling protein wisp2 by preventing its degradation to suppress the progression of acute myeloid leukemia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996369/ https://www.ncbi.nlm.nih.gov/pubmed/36736423 http://dx.doi.org/10.1016/j.jbc.2023.102971 |
work_keys_str_mv | AT zhanghao acetylationstabilizesthesignalingproteinwisp2bypreventingitsdegradationtosuppresstheprogressionofacutemyeloidleukemia AT songwenjun acetylationstabilizesthesignalingproteinwisp2bypreventingitsdegradationtosuppresstheprogressionofacutemyeloidleukemia AT maxinying acetylationstabilizesthesignalingproteinwisp2bypreventingitsdegradationtosuppresstheprogressionofacutemyeloidleukemia AT yumingxiao acetylationstabilizesthesignalingproteinwisp2bypreventingitsdegradationtosuppresstheprogressionofacutemyeloidleukemia AT chenlulu acetylationstabilizesthesignalingproteinwisp2bypreventingitsdegradationtosuppresstheprogressionofacutemyeloidleukemia AT taoyanling acetylationstabilizesthesignalingproteinwisp2bypreventingitsdegradationtosuppresstheprogressionofacutemyeloidleukemia |