Cargando…

Performance and milk fatty acid profile of beef cows with a different energy status with short nutrient restriction and refeeding

Our study objective was to determine the effect of a short feed restriction (4 d) and subsequent refeeding (4 d) on the performance and metabolism of beef cows with a different nutritional status by particularly focusing on their milk fatty acid (FA) profile, to consider its potential use as biomark...

Descripción completa

Detalles Bibliográficos
Autores principales: Orquera-Arguero, Karina G, Blanco, Mireia, Bertolín, Juan R, Ferrer, Javier, Casasús, Isabel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996621/
https://www.ncbi.nlm.nih.gov/pubmed/36795068
http://dx.doi.org/10.1093/jas/skad053
_version_ 1784903085514031104
author Orquera-Arguero, Karina G
Blanco, Mireia
Bertolín, Juan R
Ferrer, Javier
Casasús, Isabel
author_facet Orquera-Arguero, Karina G
Blanco, Mireia
Bertolín, Juan R
Ferrer, Javier
Casasús, Isabel
author_sort Orquera-Arguero, Karina G
collection PubMed
description Our study objective was to determine the effect of a short feed restriction (4 d) and subsequent refeeding (4 d) on the performance and metabolism of beef cows with a different nutritional status by particularly focusing on their milk fatty acid (FA) profile, to consider its potential use as biomarker of metabolic status. Thirty-two Parda de Montaña multiparous lactating beef cows were individually fed a diet based on the average cow’s net energy (NE) and metabolizable protein requirements. At 58 d in milk (DIM, day 0), cows underwent a 4 d feed restriction (55% requirements, restriction period). Before and after the restriction, diets met 100% of their requirements (basal and refeeding periods). Cow performance, milk yield and composition, and plasma metabolites, were determined on day −2, 1, 3, 5, 6, and 8. Cows were classified into two status clusters according to their pre-challenge performance and energy balance (EB) (Balanced vs. Imbalanced). All traits were statistically analyzed considering the fixed effect of status cluster and feeding period or day, with cow as a random effect. Imbalanced cows were heavier and had a more negative EB (P < 0.001), but similar milk yield, milk composition, and circulating metabolites (except for greater urea) than Balanced cows (P > 0.10). Milk contents of C18:1 cis-9, monounsaturated FA (MUFA), and mobilization FA were greater (P < 0.05), whereas saturated FA (SFA) and de novo FA were lesser in Imbalanced than Balanced cows (P < 0.05). Restriction decreased body weight (BW), milk yield, and milk protein compared to the basal period, but increased milk urea and plasma nonesterified fatty acids (NEFA) (P < 0.001). Milk contents of SFA, de novo, and mixed FA decreased immediately during the restriction, while MUFA, polyunsaturated FA and mobilization FA increased (P < 0.001). Basal milk FA contents were recovered on day 2 of refeeding, and all their changes strongly correlated with differences in EB and NEFA (P < 0.05). The general lack of interactions between status clusters and feeding periods implied that the response mechanisms to diet changes did not differ between cows with a different pre-challenge nutritional status.
format Online
Article
Text
id pubmed-9996621
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-99966212023-03-10 Performance and milk fatty acid profile of beef cows with a different energy status with short nutrient restriction and refeeding Orquera-Arguero, Karina G Blanco, Mireia Bertolín, Juan R Ferrer, Javier Casasús, Isabel J Anim Sci Ruminant Nutrition Our study objective was to determine the effect of a short feed restriction (4 d) and subsequent refeeding (4 d) on the performance and metabolism of beef cows with a different nutritional status by particularly focusing on their milk fatty acid (FA) profile, to consider its potential use as biomarker of metabolic status. Thirty-two Parda de Montaña multiparous lactating beef cows were individually fed a diet based on the average cow’s net energy (NE) and metabolizable protein requirements. At 58 d in milk (DIM, day 0), cows underwent a 4 d feed restriction (55% requirements, restriction period). Before and after the restriction, diets met 100% of their requirements (basal and refeeding periods). Cow performance, milk yield and composition, and plasma metabolites, were determined on day −2, 1, 3, 5, 6, and 8. Cows were classified into two status clusters according to their pre-challenge performance and energy balance (EB) (Balanced vs. Imbalanced). All traits were statistically analyzed considering the fixed effect of status cluster and feeding period or day, with cow as a random effect. Imbalanced cows were heavier and had a more negative EB (P < 0.001), but similar milk yield, milk composition, and circulating metabolites (except for greater urea) than Balanced cows (P > 0.10). Milk contents of C18:1 cis-9, monounsaturated FA (MUFA), and mobilization FA were greater (P < 0.05), whereas saturated FA (SFA) and de novo FA were lesser in Imbalanced than Balanced cows (P < 0.05). Restriction decreased body weight (BW), milk yield, and milk protein compared to the basal period, but increased milk urea and plasma nonesterified fatty acids (NEFA) (P < 0.001). Milk contents of SFA, de novo, and mixed FA decreased immediately during the restriction, while MUFA, polyunsaturated FA and mobilization FA increased (P < 0.001). Basal milk FA contents were recovered on day 2 of refeeding, and all their changes strongly correlated with differences in EB and NEFA (P < 0.05). The general lack of interactions between status clusters and feeding periods implied that the response mechanisms to diet changes did not differ between cows with a different pre-challenge nutritional status. Oxford University Press 2023-02-16 /pmc/articles/PMC9996621/ /pubmed/36795068 http://dx.doi.org/10.1093/jas/skad053 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of the American Society of Animal Science. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Ruminant Nutrition
Orquera-Arguero, Karina G
Blanco, Mireia
Bertolín, Juan R
Ferrer, Javier
Casasús, Isabel
Performance and milk fatty acid profile of beef cows with a different energy status with short nutrient restriction and refeeding
title Performance and milk fatty acid profile of beef cows with a different energy status with short nutrient restriction and refeeding
title_full Performance and milk fatty acid profile of beef cows with a different energy status with short nutrient restriction and refeeding
title_fullStr Performance and milk fatty acid profile of beef cows with a different energy status with short nutrient restriction and refeeding
title_full_unstemmed Performance and milk fatty acid profile of beef cows with a different energy status with short nutrient restriction and refeeding
title_short Performance and milk fatty acid profile of beef cows with a different energy status with short nutrient restriction and refeeding
title_sort performance and milk fatty acid profile of beef cows with a different energy status with short nutrient restriction and refeeding
topic Ruminant Nutrition
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9996621/
https://www.ncbi.nlm.nih.gov/pubmed/36795068
http://dx.doi.org/10.1093/jas/skad053
work_keys_str_mv AT orqueraarguerokarinag performanceandmilkfattyacidprofileofbeefcowswithadifferentenergystatuswithshortnutrientrestrictionandrefeeding
AT blancomireia performanceandmilkfattyacidprofileofbeefcowswithadifferentenergystatuswithshortnutrientrestrictionandrefeeding
AT bertolinjuanr performanceandmilkfattyacidprofileofbeefcowswithadifferentenergystatuswithshortnutrientrestrictionandrefeeding
AT ferrerjavier performanceandmilkfattyacidprofileofbeefcowswithadifferentenergystatuswithshortnutrientrestrictionandrefeeding
AT casasusisabel performanceandmilkfattyacidprofileofbeefcowswithadifferentenergystatuswithshortnutrientrestrictionandrefeeding